scikit-learn 的建模万能模板!
Python学习与数据挖掘
共 12030字,需浏览 25分钟
·
2023-07-31 21:04
↓推荐关注↓
-
明确你需要解决的问题是什么类型,以及知道解决该类型问题所对应的算法。 -
从skicit-learn中调用相应的算法构建模型即可。是的!在机器学习领域,如果你只是抱着体验机器学习的心态,实现起来就是这么简单。
第一步很好解决
1、加载数据集
from sklearn.datasets import load_iris
data = load_iris()
x = data.data
y = data.target
array([[5.1, 3.5, 1.4, 0.2], [4.9, 3. , 1.4, 0.2], [4.7, 3.2, 1.3, 0.2], [4.6, 3.1, 1.5, 0.2], [5. , 3.6, 1.4, 0.2], [5.4, 3.9, 1.7, 0.4], [4.6, 3.4, 1.4, 0.3], [5. , 3.4, 1.5, 0.2], [4.4, 2.9, 1.4, 0.2], [4.9, 3.1, 1.5, 0.1], [5.4, 3.7, 1.5, 0.2], [4.8, 3.4, 1.6, 0.2], [4.8, 3. , 1.4, 0.1], [4.3, 3. , 1.1, 0.1], …………
array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2])
2、数据集拆分
train_test_split
的目的是保证从数据集中均匀拆分出测试集。这里,简单把10%的数据集拿出来用作测试集。
from sklearn.model_selection import train_test_split
train_x,test_x,train_y,test_y = train_test_split(x,y,test_size=0.1,random_state=0)
万能模板V1.0版
助你快速构建一个基本的算法模型
模板1.0应用案例
1、构建SVM分类模型
scikit-learn.svm.SVC
下,所以:
-
算法位置填入: svm
-
算法名填入: SVC()
-
模型名自己起,这里我们就叫 svm_model
# svm分类器
from sklearn.svm import SVC
from sklearn.metrics import accuracy_score
svm_model = SVC()
svm_model.fit(train_x,train_y)
pred1 = svm_model.predict(train_x)
accuracy1 = accuracy_score(train_y,pred1)
print('在训练集上的精确度: %.4f'%accuracy1)
pred2 = svm_model.predict(test_x)
accuracy2 = accuracy_score(test_y,pred2)
print('在测试集上的精确度: %.4f'%accuracy2)
在训练集上的精确度: 0.9810
在测试集上的精确度: 0.9778
2、构建LR分类模型
sklearn.linear_model.LogisticRegression
下,所以:
-
算法位置填入: linear_model
-
算法名填入: LogisticRegression
-
模型名叫做:lr_model。
# LogisticRegression分类器
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score #评分函数用精确度评估
lr_model = LogisticRegression()
lr_model.fit(train_x,train_y)
pred1 = lr_model.predict(train_x)
accuracy1 = accuracy_score(train_y,pred1)
print('在训练集上的精确度: %.4f'%accuracy1)
pred2 = lr_model.predict(test_x)
accuracy2 = accuracy_score(test_y,pred2)
print('在测试集上的精确度: %.4f'%accuracy2)
在训练集上的精确度: 0.9429
在测试集上的精确度: 0.8889
3、构建随机森林分类模型
sklearn.ensemble.RandomForestClassifier
下,好了,现在你应该可以自己写了,这个作为本文的一个小测试,欢迎在评论区写下你的答案。
万能模板V2.0版
加入交叉验证,让算法模型评估更加科学
cross_val_score()
这个函数里了,只需要调用该函数即可,不需要自己想什么拆分算法,也不用写for循环进行循环训练。
# 输出精确度的平均值
# print("训练集上的精确度: %0.2f " % scores1.mean())
# 输出精确度的平均值和置信度区间
print("训练集上的平均精确度: %0.2f (+/- %0.2f)" % (scores2.mean(), scores2.std() * 2))
模板2.0应用案例:
1、构建SVM分类模型
### svm分类器
from sklearn.model_selection import cross_val_score
from sklearn.svm import SVC
svm_model = SVC()
svm_model.fit(train_x,train_y)
scores1 = cross_val_score(svm_model,train_x,train_y,cv=5, scoring='accuracy')
# 输出精确度的平均值和置信度区间
print("训练集上的精确度: %0.2f (+/- %0.2f)" % (scores1.mean(), scores1.std() * 2))
scores2 = cross_val_score(svm_model,test_x,test_y,cv=5, scoring='accuracy')
# 输出精确度的平均值和置信度区间
print("测试集上的平均精确度: %0.2f (+/- %0.2f)" % (scores2.mean(), scores2.std() * 2))
print(scores1)
print(scores2)
训练集上的精确度: 0.97 (+/- 0.08)
测试集上的平均精确度: 0.91 (+/- 0.10)
[1. 1. 1. 0.9047619 0.94736842]
[1. 0.88888889 0.88888889 0.875 0.875 ]
2、构建LR分类模型
# LogisticRegression分类器
from sklearn.model_selection import cross_val_score
from sklearn.linear_model import LogisticRegression
lr_model = LogisticRegression()
lr_model.fit(train_x,train_y)
scores1 = cross_val_score(lr_model,train_x,train_y,cv=5, scoring='accuracy')
# 输出精确度的平均值和置信度区间
print("训练集上的精确度: %0.2f (+/- %0.2f)" % (scores1.mean(), scores1.std() * 2))
scores2 = cross_val_score(lr_model,test_x,test_y,cv=5, scoring='accuracy')
# 输出精确度的平均值和置信度区间
print("测试集上的平均精确度: %0.2f (+/- %0.2f)" % (scores2.mean(), scores2.std() * 2))
print(scores1)
print(scores2)
训练集上的精确度: 0.94 (+/- 0.07)
测试集上的平均精确度: 0.84 (+/- 0.14)
[0.90909091 1. 0.95238095 0.9047619 0.94736842]
[0.90909091 0.88888889 0.88888889 0.75 0.75 ]
cross_validate()
函数。
万能模板V3.0版
调参让算法表现更上一层楼
算法().get_params()
方法来查看每个算法可以调整的参数,比如说,我们想查看SVM分类器算法可以调整的参数,可以:
SVC().get_params()
{'C': 1.0,
'cache_size': 200,
'class_weight': None,
'coef0': 0.0,
'decision_function_shape': 'ovr',
'degree': 3,
'gamma': 'auto',
'kernel': 'rbf',
'max_iter': -1,
'probability': False,
'random_state': None,
'shrinking': True,
'tol': 0.001,
'verbose': False}
best_model
就是我们得到的最优模型,可以利用这个模型进行预测。
best_model
还有好多好用的属性:
-
best_model.cv_results_
:可以查看不同参数情况下的评价结果。 -
best_model.param_
:得到该模型的最优参数 -
best_model.best_score_
: 得到该模型的最后评分结果
模板3.0应用案例
实现SVM分类器
###1、svm分类器
from sklearn.model_selection import cross_val_score,GridSearchCV
from sklearn.svm import SVC
svm_model = SVC()
params = [
{'kernel': ['linear'], 'C': [1, 10, 100, 100]},
{'kernel': ['poly'], 'C': [1], 'degree': [2, 3]},
{'kernel': ['rbf'], 'C': [1, 10, 100, 100], 'gamma':[1, 0.1, 0.01, 0.001]}
]
best_model = GridSearchCV(svm_model, param_grid=params,cv = 5,scoring = 'accuracy')
best_model.fit(train_x,train_y)
best_model.best_score_
0.9714285714285714
best_model.best_params_
{'C': 1, 'kernel': 'linear'}
best_model.best_estimator_
best_model.cv_results_
注:
1、以前版本是best_model.grid_scores_,现在已经移除
2、这个函数输出很多数据,不方便查看,一般不用
来源:https://zhuanlan.zhihu.com/p/88729124
- EOF -
作者简介
城哥,公众号9年博主,一线互联网工作10年(目前在职)、公司校招和社招技术面试官,主导多个公司级实战项目(数据分析挖掘、算法、AI平台建设等)。
关注我,陪你一起成长,遇见更好的自己。
星球服务
加入知识星球,可以享受7大福利与服务:免费获取海量技术资料、向我 1 对 1 技术咨询、求职指导,简历优化、历史文章答疑(源码+数据)、综合&专业技术交流社群、前沿技术分享(包含ChatGPT使用技巧)、定制专属学习路线,帮你快速成长、告别迷茫。
原创不易,技术学习资料如下,星球成员可免费获取,非星球成员,添加城哥微信:dkl88191,请城哥喝杯星巴克。
评论