用图讲解 ElasticSearch 搜索原理,你就明白了!

共 3460字,需浏览 7分钟

 ·

2020-10-23 14:01

注意文末有最新Java实战项目面试题

先自上而下,后自底向上的介绍ElasticSearch的底层工作原理,试图回答以下问题:


  • 为什么我的搜索 foo-bar 无法匹配 _foo-bar_ ?
  • 为什么增加更多的文件会压缩索引(Index)?
  • 为什么ElasticSearch占用很多内存?


图解ElasticSearch


云上的集群


集群里的盒子

云里面的每个白色正方形的盒子代表一个节点——Node。


节点之间

在一个或者多个节点直接,多个绿色小方块组合在一起形成一个ElasticSearch的索引。


索引里的小方块

在一个索引下,分布在多个节点里的绿色小方块称为分片——Shard。


Shard=Lucene Index

一个ElasticSearch的Shard本质上是一个Lucene Index。


Lucene是一个Full Text搜索库(也有很多其他形式的搜索库),ElasticSearch是建立在Lucene之上的。接下来的故事要说的大部分内容实际上是ElasticSearch如何基于Lucene工作的。

图解Lucene


Mini索引——segment

在Lucene里面有很多小的segment,我们可以把它们看成Lucene内部的mini-index。


Segment内部


有着许多数据结构

  • Inverted Index
  • Stored Fields
  • Document Values
  • Cache


最最重要的Inverted Index


Inverted Index主要包括两部分:

  1. 一个有序的数据字典Dictionary(包括单词Term和它出现的频率)。
  2. 与单词Term对应的Postings(即存在这个单词的文件)。

当我们搜索的时候,首先将搜索的内容分解,然后在字典里找到对应Term,从而查找到与搜索相关的文件内容。


查询“the fury”


自动补全(AutoCompletion-Prefix)

如果想要查找以字母“c”开头的字母,可以简单的通过二分查找(Binary Search)在Inverted

Index表中找到例如“choice”、“coming”这样的词(Term)。


昂贵的查找

如果想要查找所有包含“our”字母的单词,那么系统会扫描整个Inverted Index,这是非常昂贵的。


在此种情况下,如果想要做优化,那么我们面对的问题是如何生成合适的Term。

问题的转化


对于以上诸如此类的问题,我们可能会有几种可行的解决方案:

  • suffix -> xiffus
    如果我们想以后缀作为搜索条件,可以为Term做反向处理。
  • (60.6384, 6.5017) -> u4u8gyykk
    对于GEO位置信息,可以将它转换为GEO Hash。
  • 123 -> {1-hundreds, 12-tens, 123}

对于简单的数字,可以为它生成多重形式的Term。

解决拼写错误

一个  Python库

https://pypi.python.org/pypi/misspellings

为单词生成了一个包含错误拼写信息的树形状态机,解决拼写错误的问题。


Stored Field字段查找

当我们想要查找包含某个特定标题内容的文件时,Inverted Index就不能很好的解决这个问题,所以Lucene提供了另外一种数据结构Stored
Fields来解决这个问题。本质上,Stored Fields是一个简单的键值对key-

value。默认情况下,ElasticSearch会存储整个文件的JSON source。


Document Values为了排序,聚合
即使这样,我们发现以上结构仍然无法解决诸如:排序、聚合、facet,因为我们可能会要读取大量不需要的信息。

所以,另一种数据结构解决了此种问题:Document Values。这种结构本质上就是一个列式的存储,它高度优化了具有相同类型的数据的存储结构。


为了提高效率,ElasticSearch可以将索引下某一个Document Value全部读取到内存中进行操作,这大大提升访问速度,但是也同时会消耗掉大量的内存空间。

总之,这些数据结构Inverted Index、Stored Fields、Document Values及其缓存,都在segment内部。

搜索发生时


搜索时,Lucene会搜索所有的segment然后将每个segment的搜索结果返回,最后合并呈现给客户。

Lucene的一些特性使得这个过程非常重要:

  • Segments是不可变的(immutable)
    • Delete? 当删除发生时,Lucene做的只是将其标志位置为删除,但是文件还是会在它原来的地方,不会发生改变
    • Update? 所以对于更新来说,本质上它做的工作是:先 删除 ,然后 重新索引(Re-index)
  • 随处可见的压缩
    Lucene非常擅长压缩数据,基本上所有教科书上的压缩方式,都能在Lucene中找到。
  • 缓存所有的所有

Lucene也会将所有的信息做缓存,这大大提高了它的查询效率。

缓存的故事


当ElasticSearch索引一个文件的时候,会为文件建立相应的缓存,并且会定期(每秒)刷新这些数据,然后这些文件就可以被搜索到。


随着时间的增加,我们会有很多segments,


所以ElasticSearch会将这些segment合并,在这个过程中,segment会最终被删除掉


这就是为什么增加文件可能会使索引所占空间变小,它会引起merge,从而可能会有更多的压缩。

举个栗子

有两个segment将会merge


这两个segment最终会被删除,然后合并成一个新的segment


这时这个新的segment在缓存中处于cold状态,但是大多数segment仍然保持不变,处于warm状态。

以上场景经常在Lucene Index内部发生的。


在Shard中搜索


ElasticSearch从Shard中搜索的过程与Lucene Segment中搜索的过程类似。


与在Lucene Segment中搜索不同的是,Shard可能是分布在不同Node上的,所以在搜索与返回结果时,所有的信息都会通过网络传输。

需要注意的是:

1次搜索查找2个shard = 2次分别搜索shard


对于日志文件的处理

当我们想搜索特定日期产生的日志时,通过根据时间戳对日志文件进行分块与索引,会极大提高搜索效率。

当我们想要删除旧的数据时也非常方便,只需删除老的索引即可。


在上种情况下,每个index有两个shards

如何Scale



shard不会进行更进一步的拆分,但是shard可能会被转移到不同节点上


所以,如果当集群节点压力增长到一定的程度,我们可能会考虑增加新的节点,这就会要求我们对所有数据进行重新索引,这是我们不太希望看到的,所以我们需要在规划的时候就考虑清楚,如何去平衡足够多的节点与不足节点之间的关系。

节点分配与Shard优化

  • 为更重要的数据索引节点,分配性能更好的机器
  • 确保每个shard都有副本信息replica



路由Routing

每个节点,每个都存留一份路由表,所以当请求到任何一个节点时,ElasticSearch都有能力将请求转发到期望节点的shard进一步处理。


一个真实的请求



Query


Query有一个类型filtered,以及一个multi_match的查询

Aggregation


根据作者进行聚合,得到top10的hits的top10作者的信息

请求分发

这个请求可能被分发到集群里的任意一个节点


上帝节点


这时这个节点就成为当前请求的协调者(Coordinator),它决定:

  • 根据索引信息,判断请求会被路由到哪个核心节点
  • 以及哪个副本是可用的
  • 等等

路由


在真实搜索之前

ElasticSearch 会将Query转换成Lucene Query


然后在所有的segment中执行计算


对于Filter条件本身也会有缓存


但queries不会被缓存,所以如果相同的Query重复执行,应用程序自己需要做缓存


所以:

  • filters可以在任何时候使用
  • query只有在需要score的时候才使用

返回

搜索结束之后,结果会沿着下行的路径向上逐层返回。



来源:cnblogs.com/richaaaard/p/5226334.html


---END---
文末福利



浏览 95
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报
评论
图片
表情
推荐
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报