任务执行龟速,原因竟然是......
共 6029字,需浏览 13分钟
·
2021-12-13 06:08
目录
1、问题背景
2、分析和复盘
2.1 网络带宽测试
2.2 dns 解析测试
2.3 业务代码排查
2.4 多方对比法
2.5 直接下载测试
3、问题定位
4、问题分析
5、问题解决
6、小结
1、问题背景
某天,业务同学反馈生产环境k8s
集群中由核心服务创建的Job
任务执行速度奇慢......
通过分析服务日志发现,该服务运行前期主要是执行请求数据交换服务,获取到oss
对象存储的文件url
后进行下载,下载完成后再执行其他任务
2、分析和复盘
“服务好好的,怎么用着用着就慢了呢?” 旁边的 xx 开始发起了灵魂拷问
由于此问题偏故障型,首先想到的当然是秉承着“有报错,看日志”的宗旨,去看各方服务的日志
通过排查日志,均无错误,但现象就是日志慢而且卡顿
于是先判断是不是服务之间的网络出问题了
简单思考了下,与网络因素相关,再加上排除法,最小化可能的相关原因有如下
pod
网卡节点和 pod
网络检查调度到不同节点的网卡对比 不同场景下网卡出入站带宽 dns
解析节点资源综合对比 oss
服务端限流等策略核查服务本身代码是否变更等等
对照可能原因开始一一排查,如下列举一些相关的具体排查方法,其余就不再赘述了
2.1 网络带宽测试
对于网络带宽的测试,可以选用ethtool
、iperf
等工具,可以很方便的帮我们查看网卡相关信息,测试网络出站入站的带宽,顺便加上抓包工具
# ethtool
Settings for eth0:
Supported ports: [ ]
Supported link modes: Not reported
Supported pause frame use: No
Supports auto-negotiation: No
Advertised link modes: Not reported
Advertised pause frame use: No
Advertised auto-negotiation: No
Speed: 10000Mb/s
Duplex: Full
Port: Twisted Pair
PHYAD: 0
Transceiver: internal
Auto-negotiation: off
MDI-X: Unknown
Cannot get wake-on-lan settings: Operation not permitted
Link detected: yes
# iperf
Server listening on TCP port 5001
TCP window size: 12.0 MByte (default)
------------------------------------------------------------
[ 4] local 10.244.155.34 port 5001 connected with 10.244.0.196 port 42148
[ ID] Interval Transfer Bandwidth
[ 4] 0.0000-2.0000 sec 1.62 GBytes 6.97 Gbits/sec
[ 4] 2.0000-4.0000 sec 1.15 GBytes 4.93 Gbits/sec
[ 4] 4.0000-6.0000 sec 1.15 GBytes 4.93 Gbits/sec
[ 4] 6.0000-8.0000 sec 1.14 GBytes 4.91 Gbits/sec
[ 4] 8.0000-10.0000 sec 1.14 GBytes 4.91 Gbits/sec
[ 4] 10.0000-12.0000 sec 1.14 GBytes 4.92 Gbits/sec
[ 4] 12.0000-14.0000 sec 1.14 GBytes 4.89 Gbits/sec
[ 4] 14.0000-16.0000 sec 1.14 GBytes 4.90 Gbits/sec
[ 4] 16.0000-18.0000 sec 1.14 GBytes 4.88 Gbits/sec
[ 4] 18.0000-20.0000 sec 1.14 GBytes 4.88 Gbits/sec
[ 4] 20.0000-22.0000 sec 1.14 GBytes 4.89 Gbits/sec
[ 4] 22.0000-24.0000 sec 1.14 GBytes 4.89 Gbits/sec
[ 4] 24.0000-26.0000 sec 1.13 GBytes 4.87 Gbits/sec
[ 4] 26.0000-28.0000 sec 1.14 GBytes 4.88 Gbits/sec
[ 4] 28.0000-30.0000 sec 1.14 GBytes 4.91 Gbits/sec
[ 4] 30.0000-32.0000 sec 1.14 GBytes 4.88 Gbits/sec
[ 4] 32.0000-34.0000 sec 1.14 GBytes 4.89 Gbits/sec
[ 4] 34.0000-36.0000 sec 1.14 GBytes 4.91 Gbits/sec
[ 4] 36.0000-38.0000 sec 1.14 GBytes 4.88 Gbits/sec
[ 4] 38.0000-40.0000 sec 1.14 GBytes 4.91 Gbits/sec
[ 4] 40.0000-42.0000 sec 1.14 GBytes 4.90 Gbits/sec
[ 4] 42.0000-44.0000 sec 1.14 GBytes 4.90 Gbits/sec
[ 4] 44.0000-46.0000 sec 1.14 GBytes 4.90 Gbits/sec
[ 4] 46.0000-48.0000 sec 1.14 GBytes 4.90 Gbits/sec
[ 4] 48.0000-50.0000 sec 1.15 GBytes 4.93 Gbits/sec
[ 4] 50.0000-52.0000 sec 1.14 GBytes 4.91 Gbits/sec
[ 4] 52.0000-54.0000 sec 1.14 GBytes 4.92 Gbits/sec
[ 4] 54.0000-56.0000 sec 1.14 GBytes 4.90 Gbits/sec
[ 4] 56.0000-58.0000 sec 1.14 GBytes 4.88 Gbits/sec
[ 4] 58.0000-60.0000 sec 1.14 GBytes 4.89 Gbits/sec
[ 4] 60.0000-60.0201 sec 13.6 MBytes 5.69 Gbits/sec
[ 4] 0.0000-60.0201 sec 34.7 GBytes 4.97 Gbits/sec
结果:无果
2.2 dns 解析测试
对于dns
解析的测试,利用dig
、nslookup
工具分别选取了公网域名,内网域名,集群内域名分别测试进行对比,例如
www.baidu.com
data.ssgeek.com
data-download.default.svc.cluster.local
结果:无果
2.3 业务代码排查
针对于此业务,排查了其发布的版本,在出故障时并未发布新版本
服务是python
语言写的,于是结合sdk
对代码进行分析,将oss
下载相关逻辑拆分出来,写成python
脚本,单独调用sdk
获得下载地址,然后进行下载流程,分别计算每一步骤执行的时间
结果:无果
2.4 多方对比法
2.4.1 基础镜像
由于有同类以deployment
形式部署的对应服务,但在deployment
的pod
中下载没有任何问题
代码一样,开始怀疑是否因job
任务使用的镜像与正常的镜像底层有关系
分别检查了对应的Dockerfile
,发现base
镜像及版本都不一样
于是将其变为同样的base
镜像再次对比,任务执行时间还是有很大区别
结果:无果
2.4.2 下载外网文件
排除了镜像问题,继续排除oss
服务端的问题,于是分别通过shell
让两边的pod
去公网下载同样的大文件以及同样的小文件分别进行对比
结果:无果
到这里已经近乎mb
了
这里也省略其他对比的一些措施
2.5 直接下载测试
通过上面的一些sao
操作,发现都没有明显效果,这对问题的排查增加了一定难度
于是乎,能不能抛开代码业务逻辑不谈,先一次性拿到所有需要下载文件的地址,然后手动通过原始的shell
脚本去批量执行下载任务进行对比呢?当然
这里举例,用shell
下载文件的脚本如下
#/bin/bash
j=1
for i in `cat 1.txt`
do
echo $j
curl -s -o $j.jpg $i
let j=j+1
done
# 1.txt为文件的url列表
3、问题定位
通过上面最后一次通过shell
脚本下载文件测试时发现:
在测试脚本刚开始启动时,程序会停顿几分钟,然后再开始执行下载任务,这意味着bash
程序启动慢
换做job
,job
运行的pod
执行的是一次性任务,因此和脚本执行是一样的,只是k8s
层提供了这个脚本执行的载体,即pod
我们可以用一个简单的命令组合,检查当前bash
的执行时间,发现相比正常情况下要慢很多
# time bash -c exit
real 0m0.004s
user 0m0.000s
sys 0m0.000s
4、问题分析
通过进一步检查程序启动慢的资料发现,程序在启动之前往往会加载系统的环境变量
由于pod
执行的是一次性任务,因此这种job
的执行时间就包含了
加载环境变量的时间 程序执行时间(包含网络请求、 io
读写、计算等)
而普通的pod
,在正常运行第一次启动时就已经加载了环境变量,所以当pod
再次去执行某些任务时,已经不需要这一步骤了 ~
这样一来,当环境变量过多时,程序启动就会变慢
通过env
命令,可以打印出pod
内所有的环境变量
默认情况下k8s
会为每个pod
都注入除了自定义的环境变量以外的,这个pod
所在命名空间下所有的公共环境变量
到这里,事情开始出现了转机,于是默默兴奋了一把
于是计算了一下环境变量个数,竟然高达35000+
个环境变量,进一步排查发现,几乎99%
的环境变量都是一个大量任务的相关服务的环境变量,这个服务会以deployment
、service
的命名不同,来创建很多个定义一样,命名不同的副本服务,进一步在集群中检查,此类服务的数量达4500
多个
在谷歌Google Kubernetes Engine (GKE)
中建议
每个命名空间的Service
数不应超过5000
。如超过此值,Service
环境变量的数量会超出shell
限制,导致Pod
在启动时变慢甚至崩溃。在Kubernetes 1.13
版本后,可以通过将PodSpec
中的enableServiceLinks
设置为false
来停止填充这些变量
这个值在阿里云Alibaba Cloud Container Service for Kubernetes (ACK)
的默认建议是1000
个
即想要禁止注入无关环境变量的注入,从Kubernetes 1.13
版本开始,可以声明enableServiceLinks: false
更巧的是,默认创建的pod
,这个enableServiceLinks
选项是不可见(隐式)的,即使-o yaml
也不会输出,但是默认值又给了true
,这就让人很难察觉了
源码部分参考
pkg/apis/core/v1/defaults.go
if obj.Spec.EnableServiceLinks == nil {
enableServiceLinks := v1.DefaultEnableServiceLinks
obj.Spec.EnableServiceLinks = &enableServiceLinks
}
k8s.io/api/core/v1/types.go
const (
// The default value for enableServiceLinks attribute.
DefaultEnableServiceLinks = true
)
5、问题解决
最终通过在job
的定义中添加了这个参数的默认值,新创建的pod
的就仅剩不到30
个环境变量
修改创建job
的相关代码job_scheduler.go
var (
...
jobTaskK8sEnableServiceLinks = false
)
...
targetJob.Spec.Template.Spec.EnableServiceLinks = &jobTaskK8sEnableServiceLinks
...
再次部署新的服务并在相同场景下测试,下载速度恢复如常,问题得以解决~
6、小结
小结一下,本文记录复盘的是一次k8s
集群相关的生产故障
随着服务增多,集群的庞大,一些未知问题就必然会出现(而如果集群规模较小,也就基本不会遇到了)
对于一开始未知原因、诡异、没有思路的问题或者bug
,往往利用穷举法列出所有可能的原因,然后采取最小化复现、差异化对比等等,基本能解决大部分这类问题
今日发文试着标题党了一波,吸引一波阅读率,哈哈希望不要被喷,下次不会了 0.0
See you ~
欢迎进群一起进行技术交流
加群方式:公众号消息私信“加群”或加我好友再加群均可
参考资料
https://github.com/kubernetes/kubernetes/issues/92226
[2]https://cloud.google.com/kubernetes-engine/docs/best-practices/scalability
[3]https://mozillazg.com/2020/06/kubernetes-k8s-too-many-service-environment-variables-cause-pod-container-start-bash-too-slow.html