各机器学习领域综述清单!

小白学视觉

共 11394字,需浏览 23分钟

 ·

2023-11-11 10:22

点击上方小白学视觉”,选择加"星标"或“置顶

重磅干货,第一时间送达


前言

 

一个『机器学习领域综述大列表』,涵盖了自然语言处理、推荐系统、计算机视觉、深度学习、强化学习等主题。另外发现源repo中NLP相关的综述不是很多,于是把一些觉得还不错的文章添加进去了,重新整理更新在 AI-Surveys 中。

作者丨kaiyuan 转载自 | NewBeeNLP


  • ml-surveys: https://github.com/eugeneyan/ml-surveys

  • AI-Surveys: https://github.com/KaiyuanGao/AI-Surveys


『收藏等于看完』系列,来看看都有哪些吧, enjoy!

自然语言处理

  • 深度学习:Recent Trends in Deep Learning Based Natural Language Processing[2]

  • 文本分类:Deep Learning Based Text Classification: A Comprehensive Review[3]

  • 文本生成:Survey of the SOTA in Natural Language Generation: Core tasks, applications and evaluation[4]

  • 文本生成:Neural Language Generation: Formulation, Methods, and Evaluation[5]

  • 迁移学习:Exploring Transfer Learning with T5: the Text-To-Text Transfer Transformer[6] (Paper[7])

  • 迁移学习:Neural Transfer Learning for Natural Language Processing[8]

  • 知识图谱:A Survey on Knowledge Graphs: Representation, Acquisition and Applications[9]

  • 命名实体识别:A Survey on Deep Learning for Named Entity Recognition[10]

  • 关系抽取:More Data, More Relations, More Context and More Openness: A Review and Outlook for Relation Extraction[11]

  • 情感分析:Deep Learning for Sentiment Analysis : A Survey[12]

  • ABSA情感分析:Deep Learning for Aspect-Level Sentiment Classification: Survey, Vision, and Challenges[13]

  • 文本匹配:Neural Network Models for Paraphrase Identification, Semantic Textual Similarity, Natural Language Inference, and Question Answering[14]

  • 阅读理解:Neural Reading Comprehension And Beyond[15]

  • 阅读理解:Neural Machine Reading Comprehension: Methods and Trends[16]

  • 机器翻译:Neural Machine Translation: A Review[17]

  • 机器翻译:A Survey of Domain Adaptation for Neural Machine Translation[18]

  • 预训练模型:Pre-trained Models for Natural Language Processing: A Survey[19]

  • 注意力机制:An Attentive Survey of Attention Models[20]

  • 注意力机制:An Introductory Survey on Attention Mechanisms in NLP Problems[21]

  • 注意力机制:Attention in Natural Language Processing[22]

  • BERT:A Primer in BERTology: What we know about how BERT works[23]

  • Beyond Accuracy: Behavioral Testing of NLP Models with CheckList[24]

  • Evaluation of Text Generation: A Survey[25]

推荐系统

  • Recommender systems survey[26]

  • Deep Learning based Recommender System: A Survey and New Perspectives[27]

  • Are We Really Making Progress? A Worrying Analysis of Neural Recommendation Approaches[28]

  • A Survey of Serendipity in Recommender Systems[29]

  • Diversity in Recommender Systems – A survey[30]

  • A Survey of Explanations in Recommender Systems[31]

深度学习

  • A State-of-the-Art Survey on Deep Learning Theory and Architectures[32]

  • 知识蒸馏:Knowledge Distillation: A Survey[33]

  • 模型压缩:Compression of Deep Learning Models for Text: A Survey[34]

  • 迁移学习:A Survey on Deep Transfer Learning[35]

  • 神经架构搜索:A Comprehensive Survey of Neural Architecture Search-- Challenges and Solutions[36]

  • 神经架构搜索:Neural Architecture Search: A Survey[37]

计算机视觉

  • 目标检测:Object Detection in 20 Years[38]

  • 对抗性攻击:Threat of Adversarial Attacks on Deep Learning in Computer Vision[39]

  • 自动驾驶:Computer Vision for Autonomous Vehicles: Problems, Datasets and State of the Art[40]

强化学习

  • A Brief Survey of Deep Reinforcement Learning[41]

  • Transfer Learning for Reinforcement Learning Domains[42]

  • Review of Deep Reinforcement Learning Methods and Applications in Economics[43]

Embeddings

  • 图:A Comprehensive Survey of Graph Embedding: Problems, Techniques and Applications[44]

  • 文本:From Word to Sense Embeddings:A Survey on Vector Representations of Meaning[45]

  • 文本:Diachronic Word Embeddings and Semantic Shifts[46]

  • 文本:Word Embeddings: A Survey[47]

  • A Survey on Contextual Embeddings[48]

Meta-learning & Few-shot Learning

  • A Survey on Knowledge Graphs: Representation, Acquisition and Applications[49]

  • Meta-learning for Few-shot Natural Language Processing: A Survey[50]

  • Learning from Few Samples: A Survey[51]

  • Meta-Learning in Neural Networks: A Survey[52]

  • A Comprehensive Overview and Survey of Recent Advances in Meta-Learning[53]

  • Baby steps towards few-shot learning with multiple semantics[54]

  • Meta-Learning: A Survey[55]

  • A Perspective View And Survey Of Meta-learning[56]

其他

  • A Survey on Transfer Learning[57]

本文参考文献

[1]AI-Surveys: https://github.com/KaiyuanGao/AI-Surveys

[2]Recent Trends in Deep Learning Based Natural Language Processing: https://arxiv.org/pdf/1708.02709.pdf

[3]Deep Learning Based Text Classification: A Comprehensive Review: https://arxiv.org/pdf/2004.03705

[4]Survey of the SOTA in Natural Language Generation: Core tasks, applications and evaluation: https://www.jair.org/index.php/jair/article/view/11173/26378

[5]Neural Language Generation: Formulation, Methods, and Evaluation: https://arxiv.org/pdf/2007.15780.pdf

[6]Exploring Transfer Learning with T5: the Text-To-Text Transfer Transformer: https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html

[7]Paper: https://arxiv.org/abs/1910.10683

[8]Neural Transfer Learning for Natural Language Processing: https://aran.library.nuigalway.ie/handle/10379/15463

[9]A Survey on Knowledge Graphs: Representation, Acquisition and Applications: https://arxiv.org/abs/2002.00388

[10]A Survey on Deep Learning for Named Entity Recognition: https://arxiv.org/abs/1812.09449

[11]More Data, More Relations, More Context and More Openness: A Review and Outlook for Relation Extraction: https://arxiv.org/abs/2004.03186

[12]Deep Learning for Sentiment Analysis : A Survey: https://arxiv.org/abs/1801.07883

[13]Deep Learning for Aspect-Level Sentiment Classification: Survey, Vision, and Challenges: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8726353

[14]Neural Network Models for Paraphrase Identification, Semantic Textual Similarity, Natural Language Inference, and Question Answering: https://www.aclweb.org/anthology/C18-1328/

[15]Neural Reading Comprehension And Beyond: https://stacks.stanford.edu/file/druid:gd576xb1833/thesis-augmented.pdf

[16]Neural Machine Reading Comprehension: Methods and Trends: https://arxiv.org/abs/1907.01118

[17]Neural Machine Translation: A Review: https://arxiv.org/abs/1912.02047

[18]A Survey of Domain Adaptation for Neural Machine Translation: https://www.aclweb.org/anthology/C18-1111.pdf

[19]Pre-trained Models for Natural Language Processing: A Survey: https://arxiv.org/abs/2003.08271

[20]An Attentive Survey of Attention Models: https://arxiv.org/pdf/1904.02874.pdf

[21]An Introductory Survey on Attention Mechanisms in NLP Problems: https://arxiv.org/abs/1811.05544

[22]Attention in Natural Language Processing: https://arxiv.org/abs/1902.02181

[23]A Primer in BERTology: What we know about how BERT works: https://arxiv.org/pdf/2002.12327.pdf

[24]Beyond Accuracy: Behavioral Testing of NLP Models with CheckList: https://arxiv.org/pdf/2005.04118.pdf

[25]Evaluation of Text Generation: A Survey: https://arxiv.org/pdf/2006.14799.pdf

[26]Recommender systems survey: http://irntez.ir/wp-content/uploads/2016/12/sciencedirec.pdf

[27]Deep Learning based Recommender System: A Survey and New Perspectives: https://arxiv.org/pdf/1707.07435.pdf

[28]Are We Really Making Progress? A Worrying Analysis of Neural Recommendation Approaches: https://arxiv.org/pdf/1907.06902.pdf

[29]A Survey of Serendipity in Recommender Systems: https://www.researchgate.net/publication/306075233_A_Survey_of_Serendipity_in_Recommender_Systems

[30]Diversity in Recommender Systems – A survey: https://papers-gamma.link/static/memory/pdfs/153-Kunaver_Diversity_in_Recommender_Systems_2017.pdf

[31]A Survey of Explanations in Recommender Systems: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.418.9237&rep=rep1&type=pdf

[32]A State-of-the-Art Survey on Deep Learning Theory and Architectures: https://www.mdpi.com/2079-9292/8/3/292/htm

[33]Knowledge Distillation: A Survey: https://arxiv.org/pdf/2006.05525.pdf

[34]Compression of Deep Learning Models for Text: A Survey: https://arxiv.org/pdf/2008.05221.pdf

[35]A Survey on Deep Transfer Learning: https://arxiv.org/pdf/1808.01974.pdf

[36]A Comprehensive Survey of Neural Architecture Search-- Challenges and Solutions: https://arxiv.org/abs/2006.02903

[37]Neural Architecture Search: A Survey: https://arxiv.org/abs/1808.05377

[38]Object Detection in 20 Years: https://arxiv.org/pdf/1905.05055.pdf

[39]Threat of Adversarial Attacks on Deep Learning in Computer Vision: https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8294186

[40]Computer Vision for Autonomous Vehicles: Problems, Datasets and State of the Art: https://arxiv.org/pdf/1704.05519.pdf

[41]A Brief Survey of Deep Reinforcement Learning: https://arxiv.org/pdf/1708.05866.pdf

[42]Transfer Learning for Reinforcement Learning Domains: http://www.jmlr.org/papers/volume10/taylor09a/taylor09a.pdf

[43]Review of Deep Reinforcement Learning Methods and Applications in Economics: https://arxiv.org/pdf/2004.01509.pdf

[44]A Comprehensive Survey of Graph Embedding: Problems, Techniques and Applications: https://arxiv.org/pdf/1709.07604

[45]From Word to Sense Embeddings:A Survey on Vector Representations of Meaning: https://www.jair.org/index.php/jair/article/view/11259/26454

[46]Diachronic Word Embeddings and Semantic Shifts: https://arxiv.org/pdf/1806.03537.pdf

[47]Word Embeddings: A Survey: https://arxiv.org/abs/1901.09069

[48]A Survey on Contextual Embeddings: https://arxiv.org/abs/2003.07278

[49]A Survey on Knowledge Graphs: Representation, Acquisition and Applications: https://arxiv.org/abs/2002.00388

[50]Meta-learning for Few-shot Natural Language Processing: A Survey: https://arxiv.org/abs/2007.09604

[51]Learning from Few Samples: A Survey: https://arxiv.org/abs/2007.15484

[52]Meta-Learning in Neural Networks: A Survey: https://arxiv.org/abs/2004.05439

[53]A Comprehensive Overview and Survey of Recent Advances in Meta-Learning: https://arxiv.org/abs/2004.11149

[54]Baby steps towards few-shot learning with multiple semantics: https://arxiv.org/abs/1906.01905

[55]Meta-Learning: A Survey: https://arxiv.org/abs/1810.03548

[56]A Perspective View And Survey Of Meta-learning: https://www.researchgate.net/publication/2375370_A_Perspective_View_And_Survey_Of_Meta-Learning

[57]A Survey on Transfer Learning: http://202.120.39.19:40222/wp-content/uploads/2018/03/A-Survey-on-Transfer-Learning.pdf

   
   
下载1:OpenCV-Contrib扩展模块中文版教程
在「小白学视觉」公众号后台回复:扩展模块中文教程即可下载全网第一份OpenCV扩展模块教程中文版,涵盖扩展模块安装、SFM算法、立体视觉、目标跟踪、生物视觉、超分辨率处理等二十多章内容。

下载2:Python视觉实战项目52讲
小白学视觉公众号后台回复:Python视觉实战项目即可下载包括图像分割、口罩检测、车道线检测、车辆计数、添加眼线、车牌识别、字符识别、情绪检测、文本内容提取、面部识别等31个视觉实战项目,助力快速学校计算机视觉。

下载3:OpenCV实战项目20讲
小白学视觉公众号后台回复:OpenCV实战项目20讲即可下载含有20个基于OpenCV实现20个实战项目,实现OpenCV学习进阶。

交流群


欢迎加入公众号读者群一起和同行交流,目前有SLAM、三维视觉、传感器自动驾驶、计算摄影、检测、分割、识别、医学影像、GAN算法竞赛等微信群(以后会逐渐细分),请扫描下面微信号加群,备注:”昵称+学校/公司+研究方向“,例如:”张三 + 上海交大 + 视觉SLAM“。请按照格式备注,否则不予通过。添加成功后会根据研究方向邀请进入相关微信群。请勿在群内发送广告,否则会请出群,谢谢理解~


浏览 552
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报
评论
图片
表情
推荐
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报