原理+实践|Exactly-once系列实践之KafkaToKafka
推荐阅读:
文章目录
一、Kafka输入输出流工具类
二、统计字符个数案例
三、消费者消费kafka的事务数据
四、总结与可能出现的问题
一、Kafka输入输出流工具类
代码如下(示例):
//获取kafkaStream流
public static <T> DataStream<T> getKafkaDataStream(ParameterTool parameterTool,Class<? extends DeserializationSchema> clazz,StreamExecutionEnvironment env) throws IllegalAccessException, InstantiationException {
//加入到flink的环境全局配置中,后续可以通过上下文获取该工具类,总而得到想要的值
env.getConfig().setGlobalJobParameters(parameterTool);
//kafka配置项
Properties properties = new Properties();
properties.setProperty("bootstrap.servers", parameterTool.get("bootstrap.servers"));
properties.setProperty("group.id",parameterTool.get("group.idsource"));
properties.setProperty("auto.offset.reset",parameterTool.get("auto.offset.reset"));
properties.setProperty("enable.auto.commit",parameterTool.get("enable.auto.commit", String.valueOf(false)));
String topics = parameterTool.get("Consumertopics");
//序列化类实例化
DeserializationSchema<T> deserializationSchema = clazz.newInstance();
FlinkKafkaConsumer<T> flinkKafkaConsumer = new FlinkKafkaConsumer<>(topics, deserializationSchema, properties);
flinkKafkaConsumer.setStartFromEarliest();
//开启kafka的offset与checkpoint绑定
flinkKafkaConsumer.setCommitOffsetsOnCheckpoints(true);
return env.addSource(flinkKafkaConsumer);
}
//获取kafka生产者通用方法
/**
* offsets.topic.replication.factor 用于配置offset记录的topic的partition的副本个数
* transaction.state.log.replication.factor 事务主题的复制因子
* transaction.state.log.min.isr 覆盖事务主题的min.insync.replicas配置
*
* num.partitions 新建Topic时默认的分区数
*
* default.replication.factor 自动创建topic时的默认副本的个数
*
*
*
* 注意:这些参数,设置得更高以确保高可用性!
*
* 其中 default.replication.factor 是真正决定,topi的副本数量的
* @param parameterTool
* @param kafkaSerializationSchema
* @param <T>
* @return
*/
public static <T> FlinkKafkaProducer<T> getFlinkKafkaProducer(ParameterTool parameterTool,KafkaSerializationSchema<T> kafkaSerializationSchema){
Properties properties = new Properties();
properties.setProperty("bootstrap.servers", parameterTool.get("bootstrap.servers"));
properties.setProperty("group.id",parameterTool.get("group.idsink"));
// properties.setProperty("transaction.max.timeout.ms",parameterTool.get("transaction.max.timeout.ms"));
properties.setProperty("transaction.timeout.ms",parameterTool.get("transaction.timeout.ms"));
properties.setProperty("client.id", "flinkOutputTopicClient");
String topics = parameterTool.get("Producetopice");
return new FlinkKafkaProducer<T>(topics,kafkaSerializationSchema,properties, FlinkKafkaProducer.Semantic.EXACTLY_ONCE);
}
注意点事项
一、消费者注意项
flinkKafkaConsumer.setCommitOffsetsOnCheckpoints(true),将kafka自动提交offset关闭并且与flink的CheckPoint绑定 bootstrap.servers kafka的broker host setStartFromEarliest()设置kafka的消息消费从最初位置开始
二、生产者注意项
transaction.timeout.ms 默认情况下Kafka Broker 将transaction.max.timeout.ms设置为15分钟,我们需要将此值设置低于15分钟 FlinkKafkaProducer.Semantic.EXACTLY_ONCE设置kafka为精确一次
二、统计字符个数案例
代码如下(示例):
public static void main(String[] args) throws Exception {
//1.创建流式执行环境
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
//2.设置并行度
env.setParallelism(4);
//3.设置CK和状态后端
CkAndStateBacked.setCheckPointAndStateBackend(env,"FS");
//4.获取kafkaStream流
InputStream kafkaPropertiesStream = KafkaToKafkaExacitly.class.getClassLoader().getResourceAsStream("kafka.properties");
ParameterTool parameterTool=ParameterTool.fromPropertiesFile(kafkaPropertiesStream);
//将配置流放到全局flink运行时环境
env.getConfig().setGlobalJobParameters(parameterTool);
SimpleStringSchema simpleStringSchema = new SimpleStringSchema();
Class<? extends SimpleStringSchema> stringSchemaClass = simpleStringSchema.getClass();
DataStream<String> kafkaDataStream = KafkaUtil.getKafkaDataStream(parameterTool, stringSchemaClass, env);
System.out.println("==================================================");
kafkaDataStream.print();
//5.map包装成value,1
SingleOutputStreamOperator<Tuple2<String, Integer>> tupleStream = kafkaDataStream.map(new MapFunction<String, Tuple2<String, Integer>>() {
@Override
public Tuple2<String, Integer> map(String value) throws Exception {
if("error".equals(value)){
throw new RuntimeException("发生异常!!!");
}
return new Tuple2<>(value, 1);
}
});
tupleStream.print();
//6.按照value进行分组,并且统计value的个数
SingleOutputStreamOperator<Tuple2<String, Integer>> reduceStream = tupleStream.keyBy(new KeySelector<Tuple2<String, Integer>, String>() {
@Override
public String getKey(Tuple2<String, Integer> value) throws Exception {
return value.f0;
}
}).reduce(new ReduceFunction<Tuple2<String, Integer>>() {
@Override
public Tuple2<String, Integer> reduce(Tuple2<String, Integer> value1, Tuple2<String, Integer> value2) throws Exception {
return new Tuple2<>(value1.f0, value1.f1 + value2.f1);
}
});
System.out.println("=====================================================");
reduceStream.print();
//7.将数据输出到kafka
FlinkKafkaProducer<Tuple2<String, Integer>> flinkKafkaProducer = KafkaUtil.getFlinkKafkaProducer(parameterTool, new KafkaSerializationSchema<Tuple2<String, Integer>>() {
@Override
public void open(SerializationSchema.InitializationContext context) throws Exception {
System.out.println("=========正在向KafkaProduce输出数据!!!=============");
}
@Override
public ProducerRecord<byte[], byte[]> serialize(Tuple2<String, Integer> element, @Nullable Long timestamp) {
String producetopics = parameterTool.get("Producetopice");
String result = element.toString();
return new ProducerRecord<byte[], byte[]>(producetopics, result.getBytes(StandardCharsets.UTF_8));
}
});
reduceStream.addSink(flinkKafkaProducer).name("kafkasinktest").uid("kafkasink");
//任务执行
env.execute("KafkaToKafkaTest");
}
注意事项:
这里使用的是本地FSstateBackend,注意你的路径的设置,以hdfs://或者file://为地址标识符,否则Flink的文件系统将无法识别。
三、消费者消费kafka的事务数据
ublic static void main(String[] args) throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
Properties sourceProperties = new Properties();
sourceProperties.setProperty("bootstrap.servers", "*****");
sourceProperties.setProperty("group.id", "****");
//端到端一致性:消费数据时需要配置isolation.level=read_committed(默认值为read_uncommitted)
sourceProperties.put("isolation.level", "read_committed");
FlinkKafkaConsumer<String> ConsumerKafka = new FlinkKafkaConsumer<>("*****", new SimpleStringSchema(), sourceProperties);
ConsumerKafka.setStartFromEarliest();
DataStreamSource<String> dataStreamSource = env.addSource(ConsumerKafka);
dataStreamSource.print();
env.execute();
}
isolation.level这里设置为read_committed(默认为read_uncommitted) 这里可以看到以你CheckPoint设置的时间,来批量展示kafka生产者的消息。
四、总结与可能出现的问题
以上是flink 实现kafka的精确一次的测试例子,这里还有一点要注意,就是小伙伴们的kafka的配置里面。
offsets.topic.replication.factor=1
transaction.state.log.replication.factor=1
transaction.state.log.min.isr=1
default.replication.factor=1
这四个参数里面default.replication.factor是你kafka真正每个topic的副本数量,但是在开启事务也就是flink的addsink的时候会默认继承两阶段提交的方式,这里transaction.state.log.replication.factor一定要大于或者等于transaction.state.log.min.isr,否则你的kafka集群不满足事务副本复制的基本属性,会一直不成功,那么你的CheckPoint就会超时过期,从而导致任务的整体失败。
kafka集群第一次有消费者消费消息时会自动创建 __consumer_offsets,它的副本因子受 offsets.topic.replication.factor 参数的约束,默认值为3(注意:该参数的使用限制在0.11.0.0版本发生变化),分区数可以通过 offsets.topic.num.partitions 参数设置,默认值为50,在开启事务性的情况下就会首先会获得一个全局的TransactionCoordinator id和transactional producer并且生成唯一的序列号等 类似于一下的例子来唯一标识当前事务的消息对应的offset,以及标识。
[2022-03-24 21:07:40,022] INFO [TransactionCoordinator id=0] Initialized transactionalId Keyed Reduce -> (Sink: Print to Std. Out, Sink: kafkasinktest)-b0c5e26be6392399cc3c8a38581a81c2-8 with producerId 11101 and producer epoch 8 on partition __transaction_state-18 (kafka.coordinator.transaction.TransactionCoordinator)
当flink任务出现异常的情况下,kafka会把以及提交但是未标记可以消费的数据直接销毁,或者正常的情况下,会正式提交(本质是修改消息的标志位),之后对于消费者在开启isolation.level的时候就可以读取以及标记为可以读取的message。