Yann LeCun主讲!纽约大学《深度学习》2021课程全部放出,附slides与视频
来源:专知 本文附课程,建议阅读5分钟 Yann LeCun在纽约大学数据科学中心(CDS)主讲的《深度学习》2021年春季课程现已全部在线可看!
![](https://filescdn.proginn.com/e602ac9a641fa8dfa2a6e5613ff7683e/d05dd48c70be9d14baa971e76b68691a.webp)
YouTube视频: https://www.youtube.com/watch?v=mTtDfKgLm54 官方中文版讲义: https://atcold.github.io/pytorch-Deep-Learning/zh/ 课件: https://github.com/Atcold/NYU-DLSP21 GitHub: hhttps://atcold.github.io/NYU-DLSP21/ Reddit论坛: https://www.reddit.com/r/NYU_DeepLearning/
![](https://filescdn.proginn.com/65d1a0f45b76d6348fc72f5e0848739b/047eb62899b0a90fd15d77e712e1aa76.webp)
Theme 1: Introduction
History and resources 🎥 🖥
Gradient descent and the backpropagation algorithm 🎥 🖥
Neural nets inference 🎥 📓
Modules and architectures 🎥
Neural nets training 🎥 🖥 📓📓
Homework 1: backprop
Theme 2: Parameters sharing
Recurrent and convolutional nets 🎥 🖥 📝
ConvNets in practice 🎥 🖥 📝
Natural signals properties and the convolution 🎥 🖥 📓
Recurrent neural networks, vanilla and gated (LSTM) 🎥 🖥 📓📓
Homework 2: RNN & CNN
Theme 3: Energy based models, foundations
Energy based models (I) 🎥 🖥
Inference for LV-EBMs 🎥 🖥
What are EBMs good for? 🎥
Energy based models (II) 🎥 🖥 📝
Training LV-EBMs 🎥 🖥
Homework 3: structured prediction
Theme 4: Energy based models, advanced
Energy based models (III) 🎥 🖥
Unsup learning and autoencoders 🎥 🖥
Energy based models (VI) 🎥 🖥
From LV-EBM to target prop to (any) autoencoder 🎥 🖥
Energy based models (V) 🎥 🖥
AEs with PyTorch and GANs 🎥 🖥 📓📓
Theme 5: Associative memories
Energy based models (V) 🎥 🖥
Attention & transformer 🎥 🖥 📓
Theme 6: Graphs
Graph transformer nets [A][B] 🎥 🖥
Graph convolutional nets (I) [from last year] 🎥 🖥
Graph convolutional nets (II) 🎥 🖥 📓
Theme 7: Control
Planning and control 🎥 🖥
The Truck Backer-Upper 🎥 🖥 📓
Prediction and Planning Under Uncertainty 🎥 🖥
Theme 8: Optimisation
Optimisation (I) [from last year] 🎥 🖥
Optimisation (II) 🎥 🖥 📝
Miscellaneous
SSL for vision [A][B] 🎥 🖥
Low resource machine translation [A][B] 🎥 🖥
Lagrangian backprop, final project, and Q&A 🎥 🖥 📝
![](https://filescdn.proginn.com/703a167d512501ff6f6635fdd5a5abce/7490878e30c309bcee8aaa20a59ea525.webp)
![](https://filescdn.proginn.com/1a4dc7f229b3a831d877f26806ede0d1/bdac6e226a5495a5583843b292741234.webp)
![](https://filescdn.proginn.com/5260d7066f0c16d7a4e4d0bf4a88ffd8/4ca7399099474bab2f329581135c22d6.webp)
![](https://filescdn.proginn.com/77f33d2162b72a4a63e6a77db279190e/9f34c9e099029682063a10523b242ede.webp)
![](https://filescdn.proginn.com/9cc228674c20594ac32e2587625bbc91/7dce21cb0320c63ed2900587169aceed.webp)
![](https://filescdn.proginn.com/39686e2cb50cf31aeb216786a4137835/ec33d6c693bf55ab78d723c9b5289195.webp)