JVM 性能调优监控工具 jps、jstack、jmap、jhat、jstat、hprof 使用详解

肉眼品世界

共 10596字,需浏览 22分钟

 ·

2021-08-13 22:28

从前我们都想翻越高山

到达世界的最顶峰

证明一世的骄傲

时过境迁,才发觉偶尔躺平也是一种智慧

这个世界真的没有我们的梦想?

这个时代最值得学习的就是:投资

投资也许会短暂亏损,但是会从中洞见一个新世界

然后最终变成财富

这个世界唯一不变的真理:便是实践

不要以为在这里开户就好像占了便宜

那不过是交了一个真挚的朋友

扫码在线港美股开户


长按扫描上方购买

 本文来源:www.iteye.com/blog/josh-persistence-2161848


现实企业级Java应用开发、维护中,有时候我们会碰到下面这些问题:

  • OutOfMemoryError,内存不足
  • 内存泄露
  • 线程死锁
  • 锁争用(Lock Contention)
  • Java进程消耗CPU过高
  • ......

这些问题在日常开发、维护中可能被很多人忽视(比如有的人遇到上面的问题只是重启服务器或者调大内存,而不会深究问题根源),但能够理解并解决这些问题是Java程序员进阶的必备要求。

本文将对一些常用的JVM性能调优监控工具进行介绍,希望能起抛砖引玉之用。

一、 jps(Java Virtual Machine Process Status Tool)      :基础工具   

jps主要用来输出JVM中运行的进程状态信息。语法格式如下:


jps [options] [hostid]


如果不指定hostid就默认为当前主机或服务器。


命令行参数选项说明如下:


-q 不输出类名、Jar名和传入main方法的参数

-m 输出传入main方法的参数

-l 输出main类或Jar的全限名

-v 输出传入JVM的参数


比如下面:


root@ubuntu:/# jps -m -l
2458 org.artifactory.standalone.main.Main /usr/local/artifactory-2.2.5/etc/jetty.xml
29920 com.sun.tools.hat.Main -port 9998 /tmp/dump.dat
3149 org.apache.catalina.startup.Bootstrap start
30972 sun.tools.jps.Jps -m -l
8247 org.apache.catalina.startup.Bootstrap start
25687 com.sun.tools.hat.Main -port 9999 dump.dat
21711 mrf-center.jar


二、 jstack    


jstack主要用来查看某个Java进程内的线程堆栈信息。语法格式如下:


jstack [option] pid
jstack [option] executable core
jstack [option] [server-id@]remote-hostname-or-ip


命令行参数选项说明如下:


-l long listings,会打印出额外的锁信息,在发生死锁时可以用jstack -l pid来观察锁持有情况-m mixed mode,不仅会输出Java堆栈信息,还会输出C/C++堆栈信息(比如Native方法)


jstack可以定位到线程堆栈,根据堆栈信息我们可以定位到具体代码,所以它在JVM性能调优中使用得非常多。

下面我们来一个实例找出某个Java进程中最耗费CPU的Java线程并定位堆栈信息,用到的命令有ps、top、printf、jstack、grep。

第一步先找出Java进程ID,我部署在服务器上的Java应用名称为mrf-center:


root@ubuntu:/# ps -ef | grep mrf-center | grep -v grep
root 21711 1 1 14:47 pts/3 00:02:10 java -jar mrf-center.jar


得到进程ID为21711,第二步找出该进程内最耗费CPU的线程,可以使用ps -Lfp pid或者ps -mp pid -o THREAD, tid, time或者top -Hp pid,我这里用第三个,输出如下:



TIME列就是各个Java线程耗费的CPU时间,CPU时间最长的是线程ID为21742的线程,用


printf "%x
"
21742


得到21742的十六进制值为54ee,下面会用到。   

OK,下一步终于轮到jstack上场了,它用来输出进程21711的堆栈信息,然后根据线程ID的十六进制值grep,如下:


root@ubuntu:/# jstack 21711 | grep 54ee
"PollIntervalRetrySchedulerThread" prio=10 tid=0x00007f950043e000 nid=0x54ee in Object.wait() [0x00007f94c6eda000]


可以看到CPU消耗在PollIntervalRetrySchedulerThread这个类的Object.wait(),我找了下我的代码,定位到下面的代码:


// Idle wait
getLog().info("Thread [" + getName() + "] is idle waiting...");
schedulerThreadState = PollTaskSchedulerThreadState.IdleWaiting;
long now = System.currentTimeMillis();
long waitTime = now + getIdleWaitTime();
long timeUntilContinue = waitTime - now;
synchronized(sigLock) {try {
if(!halted.get()) {
sigLock.wait(timeUntilContinue);
}
} catch (InterruptedException ignore) {
}
}


它是轮询任务的空闲等待代码,上面的sigLock.wait(timeUntilContinue)就对应了前面的Object.wait()。

三、 jmap(Memory Map)和 jhat(Java Heap Analysis Tool):

jmap导出堆内存,然后使用jhat来进行分析,jmap语法格式如下:


jmap [option] pid
jmap [option] executable core
jmap [option] [server-id@]remote-hostname-or-ip


如果运行在64位JVM上,可能需要指定-J-d64命令选项参数。


jmap -permstat pid


打印进程的类加载器和类加载器加载的持久代对象信息,输出:类加载器名称、对象是否存活(不可靠)、对象地址、父类加载器、已加载的类大小等信息,如下图:



使用jmap -heap pid查看进程堆内存使用情况,包括使用的GC算法、堆配置参数和各代中堆内存使用情况。比如下面的例子:


root@ubuntu:/# jmap -heap 21711
Attaching to process ID 21711, please wait...
Debugger attached successfully.
Server compiler detected.
JVM version is 20.10-b01

using thread-local object allocation.
Parallel GC with 4 thread(s)

Heap Configuration:
MinHeapFreeRatio = 40
MaxHeapFreeRatio = 70
MaxHeapSize = 2067791872 (1972.0MB)
NewSize = 1310720 (1.25MB)
MaxNewSize = 17592186044415 MB
OldSize = 5439488 (5.1875MB)
NewRatio = 2
SurvivorRatio = 8
PermSize = 21757952 (20.75MB)
MaxPermSize = 85983232 (82.0MB)

Heap Usage:
PS Young Generation
Eden Space:
capacity = 6422528 (6.125MB)
used = 5445552 (5.1932830810546875MB)
free = 976976 (0.9317169189453125MB)
84.78829520089286% used
From Space:
capacity = 131072 (0.125MB)
used = 98304 (0.09375MB)
free = 32768 (0.03125MB)
75.0% used
To Space:
capacity = 131072 (0.125MB)
used = 0 (0.0MB)
free = 131072 (0.125MB)
0.0% used
PS Old Generation
capacity = 35258368 (33.625MB)
used = 4119544 (3.9287033081054688MB)
free = 31138824 (29.69629669189453MB)
11.683876009235595% used
PS Perm Generation
capacity = 52428800 (50.0MB)
used = 26075168 (24.867218017578125MB)
free = 26353632 (25.132781982421875MB)
49.73443603515625% used
....


使用jmap -histo[:live] pid查看堆内存中的对象数目、大小统计直方图,如果带上live则只统计活对象,如下:


root@ubuntu:/# jmap -histo:live 21711 | more
num #instances #bytes class name----------------------------------------------
1: 38445 5597736 <constMethodKlass>
2: 38445 5237288 <methodKlass>
3: 3500 3749504 <constantPoolKlass>
4: 60858 3242600 <symbolKlass>
5: 3500 2715264 <instanceKlassKlass>
6: 2796 2131424 <constantPoolCacheKlass>
7: 5543 1317400 [I
8: 13714 1010768 [C
9: 4752 1003344 [B
10: 1225 639656 <methodDataKlass>
11: 14194 454208 java.lang.String
12: 3809 396136 java.lang.Class
13: 4979 311952 [S
14: 5598 287064 [[I
15: 3028 266464 java.lang.reflect.Method
16: 280 163520 <objArrayKlassKlass>
17: 4355 139360 java.util.HashMap$Entry
18: 1869 138568 [Ljava.util.HashMap$Entry;
19: 2443 97720 java.util.LinkedHashMap$Entry
20: 2072 82880 java.lang.ref.SoftReference
21: 1807 71528 [Ljava.lang.Object;
22: 2206 70592 java.lang.ref.WeakReference
23: 934 52304 java.util.LinkedHashMap
24: 871 48776 java.beans.MethodDescriptor
25: 1442 46144 java.util.concurrent.ConcurrentHashMap$HashEntry
26: 804 38592 java.util.HashMap
27: 948 37920 java.util.concurrent.ConcurrentHashMap$Segment
28: 1621 35696 [Ljava.lang.Class;
29: 1313 34880 [Ljava.lang.String;
30: 1396 33504 java.util.LinkedList$Entry
31: 462 33264 java.lang.reflect.Field
32: 1024 32768 java.util.Hashtable$Entry
33: 948 31440 [Ljava.util.concurrent.ConcurrentHashMap$HashEntry;


class name是对象类型,说明如下:


B  byte
C char
D double
F float
I int
J long
Z boolean
[ 数组,如[I表示int[]
[L+类名 其他对象


还有一个很常用的情况是:用jmap把进程内存使用情况dump到文件中,再用jhat分析查看。jmap进行dump命令格式如下:


jmap -dump:format=b,file=dumpFileName pid


我一样地对上面进程ID为21711进行Dump:


root@ubuntu:/# jmap -dump:format=b,file=/tmp/dump.dat 21711
Dumping heap to /tmp/dump.dat ...
Heap dump file created


dump出来的文件可以用MAT、VisualVM等工具查看,这里用jhat查看:


root@ubuntu:/# jhat -port 9998 /tmp/dump.dat
Reading from /tmp/dump.dat...
Dump file created Tue Jan 28 17:46:14 CST 2014Snapshot read, resolving...
Resolving 132207 objects...
Chasing references, expect 26 dots..........................
Eliminating duplicate references..........................
Snapshot resolved.
Started HTTP server on port 9998Server is ready.


注意如果Dump文件太大,可能需要加上-J-Xmx512m这种参数指定最大堆内存,即jhat -J-Xmx512m -port 9998 /tmp/dump.dat。然后就可以在浏览器中输入主机地址:9998查看了:



上面红线框出来的部分大家可以自己去摸索下,最后一项支持OQL(对象查询语言)。

四、jstat(JVM统计监测工具): 

看看各个区内存和GC的情况

语法格式如下:


jstat [ generalOption | outputOptions vmid [interval[s|ms] [count]] ]


vmid是Java虚拟机ID,在Linux/Unix系统上一般就是进程ID。interval是采样时间间隔。count是采样数目。比如下面输出的是GC信息,采样时间间隔为250ms,采样数为4:


root@ubuntu:/# jstat -gc 21711 250 4
S0C S1C S0U S1U EC EU OC OU PC PU YGC YGCT FGC FGCT GCT
192.0 192.0 64.0 0.0 6144.0 1854.9 32000.0 4111.6 55296.0 25472.7 702 0.431 3 0.218 0.649
192.0 192.0 64.0 0.0 6144.0 1972.2 32000.0 4111.6 55296.0 25472.7 702 0.431 3 0.218 0.649
192.0 192.0 64.0 0.0 6144.0 1972.2 32000.0 4111.6 55296.0 25472.7 702 0.431 3 0.218 0.649
192.0 192.0 64.0 0.0 6144.0 2109.7 32000.0 4111.6 55296.0 25472.7 702 0.431 3 0.218 0.649


要明白上面各列的意义,先看JVM堆内存布局:



可以看出:


堆内存 = 年轻代 + 年老代 + 永久代
年轻代 = Eden区 + 两个Survivor区(From和To)


现在来解释各列含义:


S0C、S1C、S0U、S1U:Survivor 0/1区容量(Capacity)和使用量(Used)
EC、EU:Eden区容量和使用量
OC、OU:年老代容量和使用量
PC、PU:永久代容量和使用量
YGC、YGT:年轻代GC次数和GC耗时
FGC、FGCT:Full GC次数和Full GC耗时
GCT:GC总耗时


五、hprof(Heap/CPU Profiling Tool):    


hprof能够展现CPU使用率,统计堆内存使用情况。


语法格式如下:


java -agentlib:hprof[=options] ToBeProfiledClass
java -Xrunprof[:options] ToBeProfiledClass
javac -J-agentlib:hprof[=options] ToBeProfiledClass


完整的命令选项如下:


Option Name and Value  Description                    Default
--------------------- ----------- -------
heap=dump|sites|all heap profiling all
cpu=samples|times|old CPU usage off
monitor=y|n monitor contention n
format=a|b text(txt) or binary output a
file=<file> write data to file java.hprof[.txt]
net=<host>:<port> send data over a socket off
depth=<size> stack trace depth 4
interval=<ms> sample interval in ms 10
cutoff=<value> output cutoff point 0.0001
lineno=y|n line number in traces? y
thread=y|n thread in traces? n
doe=y|n dump on exit? y
msa=y|n Solaris micro state accounting n
force=y|n force output to <file> y
verbose=y|n print messages about dumps y


来几个官方指南上的实例。


CPU Usage Sampling Profiling(cpu=samples)的例子:


java -agentlib:hprof=cpu=samples,interval=20,depth=3 Hello


上面每隔20毫秒采样CPU消耗信息,堆栈深度为3,生成的profile文件名称是java.hprof.txt,在当前目录。 

CPU Usage Times Profiling(cpu=times)的例子,它相对于CPU Usage Sampling Profile能够获得更加细粒度的CPU消耗信息,能够细到每个方法调用的开始和结束,它的实现使用了字节码注入技术(BCI):


javac -J-agentlib:hprof=cpu=times Hello.java


Heap Allocation Profiling(heap=sites)的例子:


javac -J-agentlib:hprof=heap=sites Hello.java


Heap Dump(heap=dump)的例子,它比上面的Heap Allocation Profiling能生成更详细的Heap Dump信息:


javac -J-agentlib:hprof=heap=dump Hello.java


虽然在JVM启动参数中加入-Xrunprof:heap=sites参数可以生成CPU/Heap Profile文件,但对JVM性能影响非常大,不建议在线上服务器环境使用



推荐阅读:

世界的真实格局分析,地球人类社会底层运行原理

不是你需要中台,而是一名合格的架构师(附各大厂中台建设PPT)

企业IT技术架构规划方案

论数字化转型——转什么,如何转?

华为干部与人才发展手册(附PPT)

企业10大管理流程图,数字化转型从业者必备!

【中台实践】华为大数据中台架构分享.pdf

华为的数字化转型方法论

华为如何实施数字化转型(附PPT)

超详细280页Docker实战文档!开放下载

华为大数据解决方案(PPT)

浏览 40
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报
评论
图片
表情
推荐
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报