死锁成因分析与解决

共 6249字,需浏览 13分钟

 ·

2020-12-07 19:13

来源:blog.csdn.net/tr1912/article/details/81668423

最近总结了一波死锁问题,和大家分享一下,我这也是从网上各种浏览博客得来,希望原作者见谅,参考博客地址都在下方。

一、Mysql 锁类型和加锁分析

1、锁类型介绍

MySQL有三种锁的级别:页级、表级、行级。

  • 表级锁:开销小,加锁快;不会出现死锁;锁定粒度大,发生锁冲突的概率最高,并发度最低。
  • 行级锁:开销大,加锁慢;会出现死锁;锁定粒度最小,发生锁冲突的概率最低,并发度也最高。
  • 页面锁:开销和加锁时间界于表锁和行锁之间;会出现死锁;锁定粒度界于表锁和行锁之间,并发度一般

算法:

  • next KeyLocks锁,同时锁住记录(数据),并且锁住记录前面的Gap
  • Gap锁,不锁记录,仅仅记录前面的Gap
  • Recordlock锁(锁数据,不锁Gap)
  • 所以其实 Next-KeyLocks=Gap锁+ Recordlock锁

二、死锁产生原因和示例

2.1产生原因

所谓死锁:是指两个或两个以上的进程在执行过程中,因争夺资源而造成的一种互相等待的现象,
若无外力作用,它们都将无法推进下去.此时称系统处于死锁状态或系统产生了死锁,
这些永远在互相等待的进程称为死锁进程。表级锁不会产生死锁.所以解决死锁主要还是针对于最常用的InnoDB。

死锁的关键在于:两个(或以上)的Session加锁的顺序不一致。

那么对应的解决死锁问题的关键就是:让不同的session加锁有次序

2.2、产生示例

「案例一」

需求:将投资的钱拆成几份随机分配给借款人。

起初业务程序思路是这样的:

投资人投资后,将金额随机分为几份,然后随机从借款人表里面选几个,然后通过一条条select for update 去更新借款人表里面的余额等。

例如两个用户同时投资,A用户金额随机分为2份,分给借款人1,2

B用户金额随机分为2份,分给借款人2,1

由于加锁的顺序不一样,死锁当然很快就出现了。

「对于这个问题的改进很简单,直接把所有分配到的借款人直接一次锁住就行了。」

「Select * from xxx where id in (xx,xx,xx) for update」

「在in里面的列表值mysql是会自动从小到大排序,加锁也是一条条从小到大加的锁」

例如(以下会话id为主键):
 Session1: mysql> select * from t3 where id in (8,9) for update;
+----+--------+------+---------------------+
|id |  course | name |         ctime   |
+----+--------+------+---------------------+
|8 | WA     | f    | 2016-03-02 11:36:30 ||  9 | JX     | f    | 2016-03-01 11:36:30 
|+----+--------+------+---------------------+
rows in set (0.04 sec)
Session2:select * from t3 where id in (10,8,5) for update;
锁等待中…… 其实这个时候id=10这条记录没有被锁住的,但id=5的记录已经被锁住了,
锁的等待在id=8的这里不信请看 
Session3:mysql> select * from t3 where id=5 for update;锁等待中  
Session4:mysql> select * from t3 where id=10 for update;
+----+--------+------+---------------------+
| id | course | name | ctime               |
+----+--------+------+---------------------+
| 10 | JB     | g    | 2016-03-10 11:45:05 
|+----+--------+------+---------------------+
row in set (0.00 sec)在其它session中id=5是加不了锁的,但是id=10是可以加上锁的。

「案例二」

在开发中,经常会做这类的判断需求:根据字段值查询(有索引),如果不存在,则插入;否则更新。

以id为主键为例,目前还没有id=22的行 
Session1:select * from t3 where id=22 for update;
Empty set (0.00 sec) 
session2:select * from t3 where id=23  for update;Empty set (0.00 sec) 
Session1:insert into t3 values(22,'ac','a',now());锁等待中…… 
Session2:insert into t3 values(23,'bc','b',now());
ERROR 1213 (40001): Deadlock found when trying to get lock; try restarting transaction

当对存在的行进行锁的时候(主键),mysql就只有行锁。

当对未存在的行进行锁的时候(即使条件为主键),mysql是会锁住一段范围(有gap锁)

锁住的范围为:

(无穷小或小于表中锁住id的最大值,无穷大或大于表中锁住id的最小值)

如:如果表中目前有已有的id为(11 , 12)

那么就锁住(12,无穷大)

如果表中目前已有的id为(11 , 30)

那么就锁住(11,30)

「对于这种死锁的解决办法是:」

「insert into t3(xx,xx) on duplicate key update xx='XX';」

用mysql特有的语法来解决此问题。因为insert语句对于主键来说,插入的行不管有没有存在,都会只有行锁

「案例三」

mysql> select * from t3 where id=9 for update;
+----+--------+------+---------------------+
| id | course | name | ctime               
|+----+--------+------+---------------------+
|  9 | JX     | f    | 2016-03-01 11:36:30 
|+----+--------+------+---------------------+ 
row in set (0.00 sec)
Session2:mysql> select * from t3 where id<20 for update;锁等待中 
Session1:mysql> insert into t3 values(7,'ae','a',now());
ERROR 1213 (40001): Deadlock found when trying to get lock; try restarting transaction

这个跟案例一其它是差不多的情况,只是session1不按常理出牌了,

Session2在等待Session1的id=9的锁,session2又持了1到8的锁(注意9到19的范围并没有被session2锁住),最后,session1在插入新行时又得等待session2,故死锁发生了。

这种一般是在业务需求中基本不会出现,因为你锁住了id=9,却又想插入id=7的行,这就有点跳了,当然肯定也有解决的方法,那就是重理业务需求,避免这样的写法。

「案例四」

一般的情况,两个session分别通过一个sql持有一把锁,然后互相访问对方加锁的数据产生死锁。

「案例五」

两个单条的sql语句涉及到的加锁数据相同,但是加锁顺序不同,导致了死锁。

死锁场景如下:

「表结构:」

CREATE TABLE dltask (    
id bigint unsigned NOT NULL AUTO_INCREMENT COMMENT ‘auto id’,   
varchar(30NOT NULL COMMENT ‘uniq.a’,    
varchar(30NOT NULL COMMENT ‘uniq.b’,    
varchar(30NOT NULL COMMENT ‘uniq.c’,    
varchar(30NOT NULL COMMENT ‘data’,       
PRIMARY KEY (id),    
UNIQUE KEY uniq_a_b_c (a, b, c)) ENGINE=InnoDB DEFAULT CHARSET=utf8 COMMENT=’deadlock test’;

「a」「b」「c」三列,组合成一个唯一索引,主键索引为id列。

「事务隔离级别:」RR (Repeatable Read)

「每个事务只有一条SQL:」

delete from dltask where a=? and b=? and c=?;

「SQL的执行计划:」

「死锁日志:」

众所周知,InnoDB上删除一条记录,并不是真正意义上的物理删除,而是将记录标识为删除状态。(注:这些标识为删除状态的记录,后续会由后台的Purge操作进行回收,物理删除。但是,删除状态的记录会在索引中存放一段时间。) 在RR隔离级别下,唯一索引上满足查询条件,但是却是删除记录,如何加锁?InnoDB在此处的处理策略与前两种策略均不相同,或者说是前两种策略的组合:对于满足条件的删除记录,InnoDB会在记录上加next key lock X(对记录本身加X锁,同时锁住记录前的GAP,防止新的满足条件的记录插入。) Unique查询,三种情况,对应三种加锁策略,总结如下:

此处,我们看到了next key锁,是否很眼熟?对了,前面死锁中事务1,事务2处于等待状态的锁,均为next key锁。明白了这三个加锁策略,其实构造一定的并发场景,死锁的原因已经呼之欲出。但是,还有一个前提策略需要介绍,那就是InnoDB内部采用的死锁预防策略。

  • 「找到满足条件的记录,并且记录有效」,则对记录加X锁,No Gap锁(lock_mode X locks rec but not gap);
  • 「找到满足条件的记录,但是记录无效」(标识为删除的记录),则对记录加next key锁(同时锁住记录本身,以及记录之前的Gap:lock_mode X);
  • 「未找到满足条件的记录」,则对第一个不满足条件的记录加Gap锁,保证没有满足条件的记录插入(locks gap before rec);

「死锁预防策略」

InnoDB引擎内部(或者说是所有的数据库内部),有多种锁类型:事务锁(行锁、表锁),Mutex(保护内部的共享变量操作)、RWLock(又称之为Latch,保护内部的页面读取与修改)。

InnoDB每个页面为16K,读取一个页面时,需要对页面加S锁,更新一个页面时,需要对页面加上X锁。任何情况下,操作一个页面,都会对页面加锁,页面锁加上之后,页面内存储的索引记录才不会被并发修改。

因此,为了修改一条记录,InnoDB内部如何处理:

  • 根据给定的查询条件,找到对应的记录所在页面;
  • 对页面加上X锁(RWLock),然后在页面内寻找满足条件的记录;
  • 在持有页面锁的情况下,对满足条件的记录加事务锁(行锁:根据记录是否满足查询条件,记录是否已经被删除,分别对应于上面提到的3种加锁策略之一);

「死锁预防策略」:相对于事务锁,页面锁是一个短期持有的锁,而事务锁(行锁、表锁)是长期持有的锁。因此,为了防止页面锁与事务锁之间产生死锁。InnoDB做了死锁预防的策略:持有事务锁(行锁、表锁),可以等待获取页面锁;但反之,持有页面锁,不能等待持有事务锁。

根据死锁预防策略,在持有页面锁,加行锁的时候,如果行锁需要等待。则释放页面锁,然后等待行锁。此时,行锁获取没有任何锁保护,因此加上行锁之后,记录可能已经被并发修改。因此,此时要重新加回页面锁,重新判断记录的状态,重新在页面锁的保护下,对记录加锁。如果此时记录未被并发修改,那么第二次加锁能够很快完成,因为已经持有了相同模式的锁。但是,如果记录已经被并发修改,那么,就有可能导致本文前面提到的死锁问题。

以上的InnoDB死锁预防处理逻辑,对应的函数,是row0sel.c::row_search_for_mysql()。感兴趣的朋友,可以跟踪调试下这个函数的处理流程,很复杂,但是集中了InnoDB的精髓。

「剖析死锁的成因」

做了这么多铺垫,有了Delete操作的3种加锁逻辑、InnoDB的死锁预防策略等准备知识之后,再回过头来分析本文最初提到的死锁问题,就会手到拈来,事半而功倍。

首先,假设dltask中只有一条记录:(1, ‘a’, ‘b’, ‘c’, ‘data’)。三个并发事务,同时执行以下的这条SQL:

delete from dltask where a=’a’ and b=’b’ and c=’c';

并且产生了以下的并发执行逻辑,就会产生死锁:

上面分析的这个并发流程,完整展现了死锁日志中的死锁产生的原因。其实,根据事务1步骤6,与事务0步骤3/4之间的顺序不同,死锁日志中还有可能产生另外一种情况,那就是事务1等待的锁模式为记录上的X锁 + No Gap锁(lock_mode X locks rec but not gap waiting)。这第二种情况,也是”润洁”同学给出的死锁用例中,使用MySQL 5.6.15版本测试出来的死锁产生的原因。

「此类死锁,产生的几个前提:」

  • Delete操作,针对的是唯一索引上的等值查询的删除;(范围下的删除,也会产生死锁,但是死锁的场景,跟本文分析的场景,有所不同)
  • 至少有3个(或以上)的并发删除操作;
  • 并发删除操作,有可能删除到同一条记录,并且保证删除的记录一定存在;
  • 事务的隔离级别设置为Repeatable Read,同时未设置innodb_locks_unsafe_for_binlog参数(此参数默认为FALSE);(Read Committed隔离级别,由于不会加Gap锁,不会有next key,因此也不会产生死锁)
  • 使用的是InnoDB存储引擎;(废话!MyISAM引擎根本就没有行锁)

参考博客:

https://blog.csdn.net/mine_song/article/details/71106410

http://hedengcheng.com/?p=844

http://www.cnblogs.com/sessionbest/articles/8689082.html

浏览 18
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报
评论
图片
表情
推荐
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报