Java中如何保证线程安全性
共 17503字,需浏览 36分钟
·
2021-09-14 10:41
点击关注公众号,Java干货及时送达
牛逼!又发现了一款面试题库,太全了!!
(点击查看)
来源:blog.csdn.net/weixin_40459875/
article/details/80290875
一、线程安全在三个方面体现
1.原子性:提供互斥访问,同一时刻只能有一个线程对数据进行操作,(atomic,synchronized);
2.可见性:一个线程对主内存的修改可以及时地被其他线程看到,(synchronized,volatile);
3.有序性:一个线程观察其他线程中的指令执行顺序,由于指令重排序,该观察结果一般杂乱无序,(happens-before原则)。
接下来,依次分析。
二、原子性---atomic
JDK里面提供了很多atomic类,AtomicInteger
,AtomicLong
,AtomicBoolean
等等。
它们是通过CAS完成原子性。
我们一次来看AtomicInteger
,AtomicStampedReference
,AtomicLongArray
,AtomicBoolean
。
(1)AtomicInteger
public class AtomicIntegerExample1 {
// 请求总数
public static int clientTotal = 5000;
// 同时并发执行的线程数
public static int threadTotal = 200;
public static AtomicInteger count = new AtomicInteger(0);
public static void main(String[] args) throws Exception {
ExecutorService executorService = Executors.newCachedThreadPool();//获取线程池
final Semaphore semaphore = new Semaphore(threadTotal);//定义信号量
final CountDownLatch countDownLatch = new CountDownLatch(clientTotal);
for (int i = 0; i < clientTotal ; i++) {
executorService.execute(() -> {
try {
semaphore.acquire();
add();
semaphore.release();
} catch (Exception e) {
log.error("exception", e);
}
countDownLatch.countDown();
});
}
countDownLatch.await();
executorService.shutdown();
log.info("count:{}", count.get());
}
private static void add() {
count.incrementAndGet();
}
}
我们可以执行看到最后结果是5000是线程安全的。
那么看AtomicInteger的incrementAndGet()
方法:
再看getAndAddInt()
方法:
这里面调用了compareAndSwapInt()
方法:
它是native修饰的,代表是java底层的方法,不是通过java实现的 。
再重新看getAndAddInt()
,传来第一个值是当前的一个对象 ,比如是count.incrementAndGet(),那么在getAndAddInt()
中,var1就是count,而var2第二个值是当前的值,比如想执行的是2+1=3操作,那么第二个参数是2,第三个参数是1 。
变量5(var5)是我们调用底层的方法而得到的底层当前的值,如果没有别的线程过来处理我们count变量的时候,那么它正常返回值是2。
因此传到compareAndSwapInt方法里的参数是(count对象,当前值2,当前从底层传过来的2,从底层取出来的值加上改变量var4)。
compareAndSwapInt()希望达到的目标是对于var1对象,如果当前的值var2和底层的值var5相等,那么把它更新成后面的值(var5+var4).
compareAndSwapInt核心就是CAS核心。
关于count值为什么和底层值不一样:count里面的值相当于存在于工作内存的值,底层就是主内存。
(2)AtomicStampedReference
接下来我们看一下AtomicStampedReference
。
关于CAS有一个ABA问题:开始是A,后来改为B,现在又改为A。解决办法就是:每次变量改变的时候,把变量的版本号加1。
这就用到了AtomicStampedReference
。
我们来看AtomicStampedReference里的compareAndSet()
实现:
而在AtomicInteger里compareAndSet()
实现:
可以看到AtomicStampedReference里的compareAndSet()
中多了 一个stamp比较(也就是版本),这个值是由每次更新时来维护的。
(3)AtomicLongArray
这种维护数组的atomic类,我们可以选择性地更新其中某一个索引对应的值,也是进行原子性操作。这种对数组的操作的各种方法,会多处一个索引。
比如,我们看一下compareAndSet()
:
(4)AtomicBoolean
看一段代码:
public class AtomicBooleanExample {
private static AtomicBoolean isHappened = new AtomicBoolean(false);
// 请求总数
public static int clientTotal = 5000;
// 同时并发执行的线程数
public static int threadTotal = 200;
public static void main(String[] args) throws Exception {
ExecutorService executorService = Executors.newCachedThreadPool();
final Semaphore semaphore = new Semaphore(threadTotal);
final CountDownLatch countDownLatch = new CountDownLatch(clientTotal);
for (int i = 0; i < clientTotal ; i++) {
executorService.execute(() -> {
try {
semaphore.acquire();
test();
semaphore.release();
} catch (Exception e) {
log.error("exception", e);
}
countDownLatch.countDown();
});
}
countDownLatch.await();
executorService.shutdown();
log.info("isHappened:{}", isHappened.get());
}
private static void test() {
if (isHappened.compareAndSet(false, true)) {
log.info("execute");
}
}
}
执行之后发现,log.info("execute");
只执行了一次,且isHappend值为true。
原因就是当它第一次compareAndSet()
之后,isHappend变为true,没有别的线程干扰。
通过使用AtomicBoolean,我们可以使某段代码只执行一次。
三、原子性---synchronized
修饰代码块和方法:
@Slf4j
public class SynchronizedExample1 {
// 修饰一个代码块
public void test1(int j) {
synchronized (this) {
for (int i = 0; i < 10; i++) {
log.info("test1 {} - {}", j, i);
}
}
}
// 修饰一个方法
public synchronized void test2(int j) {
for (int i = 0; i < 10; i++) {
log.info("test2 {} - {}", j, i);
}
}
public static void main(String[] args) {
SynchronizedExample1 example1 = new SynchronizedExample1();
SynchronizedExample1 example2 = new SynchronizedExample1();
ExecutorService executorService = Executors.newCachedThreadPool();
//一
executorService.execute(() -> {
example1.test1(1);
});
executorService.execute(() -> {
example1.test1(2);
});
//二
executorService.execute(() -> {
example2.test2(1);
});
executorService.execute(() -> {
example2.test2(2);
});
//三
executorService.execute(() -> {
example1.test1(1);
});
executorService.execute(() -> {
example2.test1(2);
});
}
}
执行后可以看到对于情况一,test1内部方法块作用于example1,先执行完一次0-9输出,再执行下一次0-9输出;情况二,同情况一类似,作用于example2;情况三,可以看到交叉执行,test1分别独立作用于example1和example2,互不影响。
修饰静态方法和类:
@Slf4j
public class SynchronizedExample2 {
// 修饰一个类
public static void test1(int j) {
synchronized (SynchronizedExample2.class) {
for (int i = 0; i < 10; i++) {
log.info("test1 {} - {}", j, i);
}
}
}
// 修饰一个静态方法
public static synchronized void test2(int j) {
for (int i = 0; i < 10; i++) {
log.info("test2 {} - {}", j, i);
}
}
public static void main(String[] args) {
SynchronizedExample2 example1 = new SynchronizedExample2();
SynchronizedExample2 example2 = new SynchronizedExample2();
ExecutorService executorService = Executors.newCachedThreadPool();
executorService.execute(() -> {
example1.test1(1);
});
executorService.execute(() -> {
example2.test1(2);
});
}
}
test1和test2会锁定调用它们的对象所属的类,同一个时间只有一个对象在执行。
四、可见性---volatile
对于可见性,JVM提供了synchronized和volatile。这里我们看volatile。
(1)volatile的可见性是通过内存屏障和禁止重排序实现的
volatile会在写操作时,会在写操作后加一条store屏障指令,将本地内存中的共享变量值刷新到主内存:
volatile在进行读操作时,会在读操作前加一条load指令,从内存中读取共享变量:
(2)但是volatile不是原子性的,进行++操作不是安全的
@Slf4j
public class VolatileExample {
// 请求总数
public static int clientTotal = 5000;
// 同时并发执行的线程数
public static int threadTotal = 200;
public static volatile int count = 0;
public static void main(String[] args) throws Exception {
ExecutorService executorService = Executors.newCachedThreadPool();
final Semaphore semaphore = new Semaphore(threadTotal);
final CountDownLatch countDownLatch = new CountDownLatch(clientTotal);
for (int i = 0; i < clientTotal ; i++) {
executorService.execute(() -> {
try {
semaphore.acquire();
add();
semaphore.release();
} catch (Exception e) {
log.error("exception", e);
}
countDownLatch.countDown();
});
}
countDownLatch.await();
executorService.shutdown();
log.info("count:{}", count);
}
private static void add() {
count++;
}
}
执行后发现线程不安全,原因是 执行conut++ 时分成了三步,第一步是取出当前内存 count 值,这时 count 值时最新的,接下来执行了两步操作,分别是 +1 和重新写回主存。假设有两个线程同时在执行 count++ ,两个内存都执行了第一步,比如当前 count 值为 5 ,它们都读到了,然后两个线程分别执行了 +1 ,并写回主存,这样就丢掉了一次加一的操作。
(3)volatile适用的场景
既然volatile不适用于计数,那么volatile适用于哪些场景呢:
对变量的写操作不依赖于当前值 该变量没有包含在具有其他变量不变的式子中
因此,volatile适用于状态标记量:
线程1负责初始化,线程2不断查询inited值,当线程1初始化完成后,线程2就可以检测到inited为true了。另外,关注Java知音公众号,回复“后端面试”,送你一份面试题宝典!
五、有序性
有序性是指,在JMM中,允许编译器和处理器对指令进行重排序,但是重排序过程不会影响到单线程程序的执行,却会影响到多线程并发执行的正确性。
可以通过volatile、synchronized、lock保证有序性。
另外,JMM具有先天的有序性,即不需要通过任何手段就可以得到保证的有序性。这称为happens-before原则。
如果两个操作的执行次序无法从happens-before原则推导出来,那么它们就不能保证它们的有序性。虚拟机可以随意地对它们进行重排序。
happens-before原则:
程序次序规则:在一个单独的线程中,按照程序代码书写的顺序执行。 锁定规则:一个unlock操作happen—before后面对同一个锁的lock操作。 volatile变量规则:对一个volatile变量的写操作happen—before后面对该变量的读操作。 线程启动规则:Thread对象的start()方法happen—before此线程的每一个动作。 线程终止规则:线程的所有操作都happen—before对此线程的终止检测,可以通过Thread.join()方法结束、Thread.isAlive()的返回值等手段检测到线程已经终止执行。 线程中断规则:对线程interrupt()方法的调用happen—before发生于被中断线程的代码检测到中断时事件的发生。 对象终结规则:一个对象的初始化完成(构造函数执行结束)happen—before它的finalize()方法的开始。 传递性:如果操作A happen—before操作B,操作B happen—before操作C,那么可以得出A happen—before操作C。
如有文章对你有帮助,
欢迎关注❤️、点赞👍、转发📣!
推荐, Java面试题库,详情点击: 牛逼!又发现了一款牛逼的Java面试题库,史上最强! 点击文末“阅读原文”可直达