“卷积”其实没那么难以理解
极市导读
狄拉克函数从何而来?卷积是怎么回事?卷积定理又是什么?如果你对卷积公式不甚了解,亦或是想对其有更深的认知,那么本文便是一份优秀的科普材料。>>加入极市CV技术交流群,走在计算机视觉的最前沿
一、狄拉克何许人也?
镜头一:
1933年狄拉克获诺贝尔物理奖(与薛定谔共享)。当时他私下对学术老前辈卢瑟福(也是诺奖得主)说,对于获诺奖这个事他很苦恼,他不想成为新闻人物,更不想出名,这样会打断他平静的生活,打算拒绝接受这个荣誉。卢瑟福对他说:“如果你这样做,你会更出名。”于是狄拉克同意领奖。
镜头二:
狄拉克在美国威斯康辛大学作报告。期间,有一位听众说 :“您写在黑板右上方的那个方程我看不懂。”狄拉克听后一言不发,让当时的场面相当尴尬。主持人试图打破僵局,说狄拉克教授刚才那个问题您还没回答呢。狄拉克喃喃地回应道:“刚才那个不是一个疑问句,那是一个陈述句啊。”
镜头三:
位于英国伦敦的威斯敏斯特教堂(Westminster Abbey),是英国国王登基和皇室举行婚礼的地方。这里长眠着许多伟大人物,如牛顿、达尔文、狄更斯、邱吉尔、弥尔顿。牛顿墓旁放置有一块石碑,上面镌刻着保罗• 狄拉克的名字以及他那优美的方程式。
狄拉克最早是从事相对论动力学的研究,1925年海森堡访问剑桥大学,狄拉克深受影响,把精力转向量子力学的研究。1928年他把相对论引进了量子力学,建立了相对论形式的薛定谔方程,也就是著名的狄拉克方程。1930年狄拉克出版了他的量子力学著作著作《量子力学原理》,这是物理史上重要的里程碑,至今仍是量子力学的经典教材。
物理学中常常要研究一个物理量在空间或时间中分布的密度,例如质量密度、电荷密度、每单位时间传递的动量(力)等等,但是物理学中又常用到质点、点电荷、瞬时力等抽象模型,他们不是连续分布于空间或时间中,而是集中在空间中的某一点或者时间中的某一瞬时,那么它们的密度应该如何表示呢?——δ函数!
clc; clear all; close all;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
N=10000; % sampling numbers
Tau0=1; % define initial Tau
for i=1:100
Tau=Tau0/i;
TimeRange=linspace(-10*Tau,10*Tau,N); % display time range
FreqRange=linspace(-200*pi/i,200*pi/i,N); % display frequency range
Half_Tau=Tau/2; % -0.5 Tao ==> 0.5 Tao
RECT=1/Tau*double(abs(TimeRange)% one rectangular pulse
SINC=sinc(FreqRange*Tau*pi); % sinc pulse, Xtra
subplot(2,1,1);
plot(TimeRange,RECT,'LineWidth',1.5); grid on;
xlim([-1 1]); ylim([-0.5 120]);
xlabel('Time'); ylabel('Amplitude');
title('Made by J Pan')
subplot(2,1,2);
plot(FreqRange,SINC,'LineWidth',1.5); grid on;
xlim([-200*pi/i 200*pi/i]);ylim([-0.5 1.5]);
xlabel('Frequency'); ylabel('Amplitude');
title('Made by J Pan')
drawnow;
end
二、卷积是怎么个回事?
话说有一个七品县令,喜欢用打板子来惩戒那些市井无赖,而且有个惯例:如果没犯大罪,只打一板,释放回家,以示爱民如子。
有一个无赖,想出人头地却没啥指望,心想:既然扬不了善名,出恶名也成啊。怎么出恶名?炒作呗!怎么炒作?找名人呀!隔现在,注册个微博账号随便找个流量明星就能开撕啊 ——那时候不行,还没有微博一说,他自然想到了他的行政长官——县令。
于是在光天化日之下,无赖站在县衙门前撒了一泡尿,后果是可想而知,这是明目张胆的藐视公堂无视法律啊,自然被请进大堂挨了一板子——这无赖身体也是好,挨了板子后居然昂首挺胸回家了。躺了一天,嘿!身上啥事也没有!无赖在这件事上的决心还很大,第二天如法炮制,全然不顾行政长管的仁慈和衙门的体面,第三天、第四天......每天去县衙门领一个板子回来,还喜气洋洋地,坚持一个月之久!这无赖的名气已经和衙门口的臭气一样,传遍八方了!
县令大人噤着鼻子,呆呆地盯着案子上的惊堂木,拧着眉头思考一个问题:这三十个大板子怎么不好使捏?......想当初,本老爷可是因为奥数加分才金榜题名的,今天要好好建个数学模型,好歹要解决这个问题,挽回一点面子:
——人(系统!)挨板子(冲击!)以后,会有什么表现(输出!)?
——废话,疼呗!
——如何量化呢?
——看疼到啥程度。像这无赖的体格,每天挨一个板子啥事都不会有,连哼一下都不会有,你也看到他那得意洋洋的嘴脸了;如果一次连揍他十个板子,他可能会皱皱眉头,咬咬牙,硬挺着不哼;揍到二十个板子,他会疼得脸部扭曲,象猪似地哼哼;揍到三十个板子,他可能会象驴似地嚎叫,一把鼻涕一把泪地求你饶他一命;揍到四十个板子,他会大小便失禁,勉强哼出声来;揍到五十个板子,他连哼一下都不可能——死啦!
县令双手捧腮,若有所悟,拧紧的眉头渐渐松弛下来:
——呜呼呀!为啥那个无赖连挨了三十天大板却不喊绕命,而一次连续打上三十个大板呀?
—— 呀呼嘿,打一次的时间间隔(Δτ=24小时)太长了,所以那个无赖承受的痛苦程度一天一利索,没有叠加,始终是一个常数;如果缩短打板子的时间间隔(建议Δτ=0.5秒),那他的痛苦程度可就迅速叠加了;等到这无赖挨三十个大板(t=30)时,痛苦程度达到了他能喊叫的极限,会收到最好的惩戒效果,再多打就显示不出您的仁慈了。
——还是不太明白,时间间隔小,为什么痛苦程度会叠加呢?
——这与人(线性时不变系统)对板子(脉冲、输入、激励)的响应有关。什么是响应?人挨一个板子后,疼痛的感觉会在一天(假设的,因人而异)内慢慢消失(衰减),而不可能突然消失。这样一来,只要打板子的时间间隔很小,每一个板子引起的疼痛都来不及完全衰减,都会对最终的痛苦程度有不同的贡献,总的来说:
t个大板子造成的痛苦程度=Σ(第τ个大板子引起的痛苦*衰减系数)
三、卷积定理又是个什么玩意?
推荐阅读
评论