ES 不香吗,为啥还要 ClickHouse?

架构之美

共 16234字,需浏览 33分钟

 ·

2021-07-17 11:07



-     前言    -


Elasticsearch 是一个实时的分布式搜索分析引擎,它的底层是构建在 Lucene 之上的。简单来说是通过扩展 Lucene 的搜索能力,使其具有分布式的功能。


ES 通常会和其它两个组件 Logstash(日志采集)和 Kibana(仪表盘)一起提供端到端的日志/搜索分析的功能,常常被简称为 ELK。



-     关于 OLAP 利器    -


Clickhouse 是俄罗斯搜索巨头 Yandex 开发的面向列式存储的关系型数据库。ClickHouse 是过去两年中 OLAP 领域中最热门的,并于 2016 年开源。


ES 是最为流行的大数据日志和搜索解决方案,但是近几年来,它的江湖地位受到了一些挑战,许多公司已经开始把自己的日志解决方案从 ES 迁移到了 Clickhouse,这里就包括:携程,快手等公司。



-     架构和设计的对比    -


ES 的底层是 Lucene,主要是要解决搜索的问题。搜索是大数据领域要解决的一个常见的问题,就是在海量的数据量要如何按照条件找到需要的数据。搜索的核心技术是倒排索引和布隆过滤器。


ES 通过分布式技术,利用分片与副本机制,直接解决了集群下搜索性能与高可用的问题。



ElasticSearch 是为分布式设计的,有很好的扩展性,在一个典型的分布式配置中,每一个节点(node)可以配制成不同的角色。



如上图所示:

  • Client Node,负责 API 和数据的访问的节点,不存储/处理数据。

  • Data Node,负责数据的存储和索引。

  • Master Node,管理节点,负责 Cluster 中的节点的协调,不存储数据。


ClickHouse 是基于 MPP 架构的分布式 ROLAP(关系 OLAP)分析引擎。每个节点都有同等的责任,并负责部分数据处理(不共享任何内容)。


ClickHouse 是一个真正的列式数据库管理系统(DBMS)。在 ClickHouse 中,数据始终是按列存储的,包括矢量(向量或列块)执行的过程。


让查询变得更快,最简单且有效的方法是减少数据扫描范围和数据传输时的大小,而列式存储和数据压缩就可以帮助实现上述两点。


Clickhouse 同时使用了日志合并树,稀疏索引和 CPU 功能(如 SIMD 单指令多数据)充分发挥了硬件优势,可实现高效的计算。


Clickhouse 使用 Zookeeper 进行分布式节点之间的协调。



为了支持搜索,Clickhouse 同样支持布隆过滤器。



-     查询对比实战    -


为了对比 ES 和 Clickhouse 的基本查询能力的差异,我写了一些代码来验证:

https://github.com/gangtao/esvsch


这个测试的架构如下:



架构主要有四个部分组成:


①ES stack


ES stack 有一个单节点的 Elastic 的容器和一个 Kibana 容器组成,Elastic 是被测目标之一,Kibana 作为验证和辅助工具。


部署代码如下:

version: '3.7'

services:
  elasticsearch:
    image: docker.elastic.co/elasticsearch/elasticsearch:7.4.0
    container_name: elasticsearch
    environment:
      - xpack.security.enabled=false
      - discovery.type=single-node
    ulimits:
      memlock:
        soft: -1
        hard: -1
      nofile:
        soft: 65536
        hard: 65536
    cap_add:
      - IPC_LOCK
    volumes:
      - elasticsearch-data:/usr/share/elasticsearch/data
    ports:
      - 9200:9200
      - 9300:9300
    deploy:
      resources:
        limits:
          cpus: '4'
          memory: 4096M
        reservations:
          memory: 4096M

  kibana:
    container_name: kibana
    image: docker.elastic.co/kibana/kibana:7.4.0
    environment:
      - ELASTICSEARCH_HOSTS=http://elasticsearch:9200
    ports:
      - 5601:5601
    depends_on:
      - elasticsearch

volumes:
  elasticsearch-data:
    driver: local

②Clickhouse stack


Clickhouse stack 有一个单节点的 Clickhouse 服务容器和一个 TabixUI 作为 Clickhouse 的客户端。


 部署代码如下:

version: "3.7"
services:
  clickhouse:
    container_name: clickhouse
    image: yandex/clickhouse-server
    volumes:
      - ./data/config:/var/lib/clickhouse
    ports:
      - "8123:8123"
      - "9000:9000"
      - "9009:9009"
      - "9004:9004"
    ulimits:
      nproc: 65535
      nofile:
        soft: 262144
        hard: 262144
    healthcheck:
      test: ["CMD""wget""--spider""-q""localhost:8123/ping"]
      interval: 30s
      timeout: 5s
      retries: 3
    deploy:
      resources:
        limits:
          cpus: '4'
          memory: 4096M
        reservations:
          memory: 4096M

  tabixui:
    container_name: tabixui
    image: spoonest/clickhouse-tabix-web-client
    environment:
      - CH_NAME=dev
      - CH_HOST=127.0.0.1:8123
      - CH_LOGIN=default
    ports:
      - "18080:80"
    depends_on:
      - clickhouse
    deploy:
      resources:
        limits:
          cpus: '0.1'
          memory: 128M
        reservations:
          memory: 128M

②Clickhouse stack


Clickhouse stack 有一个单节点的 Clickhouse 服务容器和一个 TabixUI 作为 Clickhouse 的客户端。


部署代码如下:


version: "3.7"
services:
  clickhouse:
    container_name: clickhouse
    image: yandex/clickhouse-server
    volumes:
      - ./data/config:/var/lib/clickhouse
    ports:
      - "8123:8123"
      - "9000:9000"
      - "9009:9009"
      - "9004:9004"
    ulimits:
      nproc: 65535
      nofile:
        soft: 262144
        hard: 262144
    healthcheck:
      test: ["CMD""wget""--spider""-q""localhost:8123/ping"]
      interval: 30s
      timeout: 5s
      retries: 3
    deploy:
      resources:
        limits:
          cpus: '4'
          memory: 4096M
        reservations:
          memory: 4096M

  tabixui:
    container_name: tabixui
    image: spoonest/clickhouse-tabix-web-client
    environment:
      - CH_NAME=dev
      - CH_HOST=127.0.0.1:8123
      - CH_LOGIN=default
    ports:
      - "18080:80"
    depends_on:
      - clickhouse
    deploy:
      resources:
        limits:
          cpus: '0.1'
          memory: 128M
        reservations:
          memory: 128M


③数据导入 stack


数据导入部分使用了 Vector.dev 开发的 vector,该工具和 fluentd 类似,都可以实现数据管道式的灵活的数据导入。


④测试控制 stack


测试控制我使用了 Jupyter,使用了 ES 和 Clickhouse 的 Python SDK 来进行查询的测试。


用 Docker compose 启动 ES 和 Clickhouse 的 stack 后,我们需要导入数据,我们利用 Vector 的 generator 功能,生成 syslog,并同时导入 ES 和 Clickhouse。


在这之前,我们需要在 Clickhouse 上创建表。ES 的索引没有固定模式,所以不需要事先创建索引。


创建表的代码如下:


CREATE TABLE default.syslog(
    application String,
    hostname String,
    message String,
    mid String,
    pid String,
    priority Int16,
    raw String,
    timestamp DateTime('UTC'),
    version Int16
ENGINE = MergeTree()
    PARTITION BY toYYYYMMDD(timestamp)
    ORDER BY timestamp
    TTL timestamp + toIntervalMonth(1);


创建好表之后,我们就可以启动 vector,向两个 stack 写入数据了。vector 的数据流水线的定义如下:


[sources.in]
  type = "generator"
  format = "syslog"
  interval = 0.01
  count = 100000

[transforms.clone_message]
  type = "add_fields"
  inputs = ["in"]
  fields.raw = "{{ message }}"

[transforms.parser]
  # General
  type = "regex_parser"
  inputs = ["clone_message"]
  field = "message" # optional, default
  patterns = ['^<(?P<priority>\d*)>(?P<version>\d) (?P<timestamp>\d{4}-\d{2}-\d{2}T\d{2}:\d{2}:\d{2}\.\d{3}Z) (?P<hostname>\w+\.\w+) (?P<application>\w+) (?P<pid>\d+) (?P<mid>ID\d+) - (?P<message>.*)$']

[transforms.coercer]
  type = "coercer"
  inputs = ["parser"]
  types.timestamp = "timestamp"
  types.version = "int"
  types.priority = "int"

[sinks.out_console]
  # General
  type = "console"
  inputs = ["coercer"
  target = "stdout" 

  # Encoding
  encoding.codec = "json" 


[sinks.out_clickhouse]
  host = "http://host.docker.internal:8123"
  inputs = ["coercer"]
  table = "syslog"
  type = "clickhouse"

  encoding.only_fields = ["application""hostname""message""mid""pid""priority""raw""timestamp""version"]
  encoding.timestamp_format = "unix"

[sinks.out_es]
  # General
  type = "elasticsearch"
  inputs = ["coercer"]
  compression = "none" 
  endpoint = "http://host.docker.internal:9200" 
  index = "syslog-%F"

  # Encoding

  # Healthcheck
  healthcheck.enabled = true

这里简单介绍一下这个流水线:

  • source.in:生成 syslog 的模拟数据,生成 10w 条,生成间隔和 0.01 秒。

  • transforms.clone_message:把原始消息复制一份,这样抽取的信息同时可以保留原始消息。

  • transforms.parser:使用正则表达式,按照 syslog 的定义,抽取出 application,hostname,message,mid,pid,priority,timestamp,version 这几个字段。

  • transforms.coercer:数据类型转化。

  • sinks.out_console:把生成的数据打印到控制台,供开发调试。

  • sinks.out_clickhouse:把生成的数据发送到Clickhouse。

  • sinks.out_es:把生成的数据发送到 ES。


运行 Docker 命令,执行该流水线:


docker run \
        -v $(mkfile_path)/vector.toml:/etc/vector/vector.toml:ro \
        -p 18383:8383 \
        timberio/vector:nightly-alpine


数据导入后,我们针对一下的查询来做一个对比。ES 使用自己的查询语言来进行查询,Clickhouse 支持 SQL,我简单测试了一些常见的查询,并对它们的功能和性能做一些比较。


返回所有的记录:


# ES
{
  "query":{
    "match_all":{}
  }
}

# Clickhouse 
"SELECT * FROM syslog"


匹配单个字段:


# ES
{
  "query":{
    "match":{
      "hostname":"for.org"
    }
  }
}

# Clickhouse 
"SELECT * FROM syslog WHERE hostname='for.org'"

匹配多个字段:


# ES
{
  "query":{
    "multi_match":{
      "query":"up.com ahmadajmi",
        "fields":[
          "hostname",
          "application"
        ]
    }
  }
}

# Clickhouse、
"SELECT * FROM syslog WHERE hostname='for.org' OR application='ahmadajmi'"

范围查询,查找版本大于 2 的记录:


# ES
{
  "query":{
    "range":{
      "version":{
        "gte":2
      }
    }
  }
}

# Clickhouse
"SELECT * FROM syslog WHERE version >= 2"

查找到存在某字段的记录:


# ES
{
  "query":{
    "exists":{
      "field":"application"
    }
  }
}

# Clickhouse
"SELECT * FROM syslog WHERE application is not NULL"

ES 是文档类型的数据库,每一个文档的模式不固定,所以会存在某字段不存在的情况;而 Clickhouse 对应为字段为空值。


正则表达式查询,查询匹配某个正则表达式的数据:


# ES
{
  "query":{
    "regexp":{
      "hostname":{
        "value":"up.*",
          "flags":"ALL",
            "max_determinized_states":10000,
              "rewrite":"constant_score"
      }
    }
  }
}

# Clickhouse
"SELECT * FROM syslog WHERE match(hostname, 'up.*')"

聚合计数,统计某个字段出现的次数:


# ES
{
  "aggs":{
    "version_count":{
      "value_count":{
        "field":"version"
      }
    }
  }
}

# Clickhouse
"SELECT count(version) FROM syslog"

聚合不重复的值,查找所有不重复的字段的个数:

# ES
{
  "aggs":{
    "my-agg-name":{
      "cardinality":{
        "field":"priority"
      }
    }
  }
}

# Clickhouse
"SELECT count(distinct(priority)) FROM syslog "

我用 Python 的 SDK,对上述的查询在两个 Stack 上各跑 10 次,然后统计查询的性能结果。


我们画出出所有的查询的响应时间的分布:



总查询时间的对比如下:


通过测试数据我们可以看出 Clickhouse 在大部分的查询的性能上都明显要优于 Elastic。


在正则查询(Regex query)和单词查询(Term query)等搜索常见的场景下,也并不逊色。


在聚合场景下,Clickhouse 表现异常优秀,充分发挥了列村引擎的优势。


注意,我的测试并没有任何优化,对于 Clickhouse 也没有打开布隆过滤器。可见 Clickhouse 确实是一款非常优秀的数据库,可以用于某些搜索的场景。


当然 ES 还支持非常丰富的查询功能,这里只有一些非常基本的查询,有些查询可能存在无法用 SQL 表达的情况。



-     总结    -


本文通过对于一些基本查询的测试,对比了 Clickhouse 和 Elasticsearch 的功能和性能。


测试结果表明,Clickhouse 在这些基本场景表现非常优秀,性能优于 ES,这也解释了为什么用很多的公司应从 ES 切换到 Clickhouse 之上。

作者:Gang Tao

来源:zhuanlan.zhihu.com/p/353296392

浏览 31
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报
评论
图片
表情
推荐
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报