Android 图形系统之 SurfaceTexture
共 11133字,需浏览 23分钟
·
2023-10-12 12:47
SurfaceTexture是离屏渲染和TextureView的核心,内部包含了一个BufferQueue,可以把Surface生成的图像流,转换为纹理,供业务方进一步加工使用。整个架构如下图所示:
首先,通过Canvas、OpenGL、Camera或者Video Decoder生成图像流。
接着,图像流通过Surface入队到BufferQueue,并通知到GLConsumer。
然后,GLConsumer从BufferQueue获取图像流GraphicBuffer,并转换为纹理。
最后,业务方可以对纹理进一步处理,例如:上特效或者上屏。
下面我们分别看下SurfaceTexture初始化以及图像数据在SurfaceTexture内部的流转。
SurfaceTexture初始化
new SurfaceTexture(textureId)
启动SurfaceTexture初始化,核心逻辑如下所示:
SurfaceTexture_init
是SurfaceTexture初始化的核心代码,如下所示:
static void SurfaceTexture_init(JNIEnv* env, jobject thiz, jboolean isDetached, jint texName, jboolean singleBufferMode, jobject weakThiz)
{
// 创建BufferQueueCore、BufferQueueProducer、BufferQueueConsumer
sp<IGraphicBufferProducer> producer;
sp<IGraphicBufferConsumer> consumer;
BufferQueue::createBufferQueue(&producer, &consumer);
if (singleBufferMode) { // 单缓冲
consumer->setMaxBufferCount(1); // 双缓冲、三缓冲就是指这里
}
// Java层的SurfaceTexture,实际对应Native层GLConsumer
sp<GLConsumer> surfaceTexture;
if (isDetached) {
surfaceTexture = new GLConsumer(consumer,GL_TEXTURE_EXTERNAL_OES,true,!singleBufferMode);
} else {
surfaceTexture = new GLConsumer(consumer,texName,GL_TEXTURE_EXTERNAL_OES,true,!singleBufferMode);
}
// If the current context is protected, inform the producer.
if (isProtectedContext()) {
consumer->setConsumerUsageBits(GRALLOC_USAGE_PROTECTED);
}
// 为Java层SurfaceTexture.mSurfaceTexture设置GLConsumer对象地址
SurfaceTexture_setSurfaceTexture(env, thiz, surfaceTexture);
// 为Java层SurfaceTexture.mProducer设置producer对象地址
SurfaceTexture_setProducer(env, thiz, producer);
// SurfaceTexture jclass
jclass clazz = env->GetObjectClass(thiz);
// weakThiz表示Java层SurfaceTexture对象的弱引用,JNISurfaceTextureContext是JNI封装类,负责回调Java层SurfaceTexture.postEventFromNative方法
sp<JNISurfaceTextureContext> ctx(new JNISurfaceTextureContext(env, weakThiz, clazz));
// 为GLConsumer设置回调(回调到java层)
surfaceTexture->setFrameAvailableListener(ctx);
// 为Java层SurfaceTexture.mFrameAvailableListener设置ctx的对象地址
SurfaceTexture_setFrameAvailableListener(env, thiz, ctx);
}
SurfaceTexture初始化后,向GLConsumer
设置了JNISurfaceTextureContext
监听器,该监听器会回调到Java层SurfaceTexture.postEventFromNative
方法,进一步回调到注册到SurfaceTexture中的OnFrameAvailableListener监听器,用于通知业务层有新的GraphicBuffer
入队了。如果业务层对最新的GraphicBuffer
感兴趣,则调用updateTexImage
把GraphicBuffer
更新到纹理,否则啥也不做,忽略一些图形数据。
GLConsumer
是BufferQueue的直接消费者,负责把GraphicBuffer
转化为纹理。然后通过监听类wp<FrameAvailableListener> mFrameAvailableListener
通知间接消费者消费纹理。当间接消费者是SurfaceFlinger
时,监听类为Layer,Layer进一步通知SurfaceFlinger
去合成所有Layer,然后上屏。当间接消费者是SurfaceTexture
时,监听类为JNISurfaceTextureContext,用于通知Java层新的图像数据可用了。
SurfaceTexture图像数据流转
这块主要看下生产者Surface
的创建,业务层收到帧可用通知以及更新目标纹理的流程。
基于SurfaceTexture创建生产者Surface
基于纹理ID创建SurfaceTexture
后,一般会创建Surface,此时Surface是生产者,SurfaceTexture(Native层对应GLConsumer)是消费者。消费者负责把从BufferQueue中获取的GraphicBuffer转换为纹理,然后业务层可以对纹理进一步处理,例如:上特效或者上屏。
作为生产者的Surface通过BufferQueueProducer,向BufferQueue写GraphicBuffer;作为消费者的GLConsumer通过BufferQueueConsumer,从BufferQueue读GraphicBuffer。
根据SurfaceTexture
创建Surface
的核心逻辑在Native层:根据SurfaceTexture持有的BufferqueueProducer创建一个Surface对象,并把该对象的地址绑定到Java层Surface.mNativeObject
变量。核心代码如下所示:
// 基于SurfaceTexture创建Surface
public Surface(SurfaceTexture surfaceTexture) {
synchronized (mLock) {
mName = surfaceTexture.toString();
// 保存Native层Surface对象地址
setNativeObjectLocked(nativeCreateFromSurfaceTexture(surfaceTexture));
}
}
// 根据SurfaceTexture持有的BufferqueueProducer创建Surface,并返回对象地址
static jlong nativeCreateFromSurfaceTexture(JNIEnv* env, jclass clazz, jobject surfaceTextureObj) {
// 从Java层surfaceTexture.mProducer中获取BufferqueueProducer的对象地址,并创建BufferqueueProducer。
sp<IGraphicBufferProducer> producer(SurfaceTexture_getProducer(env, surfaceTextureObj));
// 基于BufferqueueProducer,创建Native Surface对象
sp<Surface> surface(new Surface(producer, true));
// 返回Surface对象地址
surface->incStrong(&sRefBaseOwner);
return jlong(surface.get());
}
可见,创建Native层Surface
对象,BufferqueueProducer
参数是必须的,它负责从BufferQueue
中出队和入队GraphicBuffer
。
创建好Surface
后,就可以通过多种方式向Surface绘制图像数据了,例如:Canvas绘制、Camera输出、视频解码器渲染和OpenGL渲染。
下面,我们分两步看下图形数据是怎么更新到目标纹理的?
业务层收到帧可用通知
这里,我们以Canvas绘制为例,看下业务层收到帧可用回调流程,如下所示:
Java层Surface调用unlockCanvasAndPost方法后,Native层Surface通过BufferqueueProducer把GraphicBuffer入队到BufferQueue,同时通过BufferQueueCore的sp<IConsumerListener> mConsumerListener
(实现类为BufferQueue::ProxyConsumerListener)监听器通知消费者,然后一步步通知到Java层为SurfaceTexture设置的OnFrameAvailableListener监听器。
业务层主动更新目标纹理
Java层OnFrameAvailableListener监听器收到回调后,需要从OpenGL线程调用updateTexImage
把GraphicBuffer
更新到纹理。这里的纹理就是我们创建SurfaceTexture时传入的纹理ID,整个更新流程如下所示:
OnFrameAvailableListener.onFrameAvailable回调可以发生在任意线程,所以不能在回调中直接调用updateTexImage,而是必须切换到OpenGL线程调用。因为updateTexImage调用链涉及到OpenGL操作,所以必须在GL线程。
核心代码是GLConsumer::updateTexImage
:
首先,通过
BufferQueueConsumer
从BufferQueue中获取可用的BufferItem
,其中包含了GraphicBuffer
。然后,基于
GraphicBuffer
创建EglImage及EGLImageKHR。最后,基于
EGLImageKHR
更新纹理内容。
简单来说,通过updateTexImage
,我们把最新的图形数据更新到了纹理,至于如何使用纹理,就是业务层的事情了。
基于GraphicBuffer更新OES纹理
上面讲到,updateTexImage
方法最终会把GraphicBuffer
更新到目标纹理,实际是通过EglImage
及EGLImageKHR
实现的,这里我们看下在Android平台上使用EGLImageKHR
的方式:
纹理目标需要从
GL_TEXTURE_2D
替换为GL_TEXTURE_EXTERNAL_OES
,例如:glBindTexture、glTexParameteri等函数。片元着色器中,声明OES扩展:
#extension GL_OES_EGL_image_external : require
。同时,使用samplerExternalOES
替代sampler2D
纹理类型。基于
GraphicBuffer
图形数据,通过eglCreateImageKHR
创建EGLImageKHR
。
GraphicBuffer
可以从BufferQueue中获取,也可以lock后获取内存地址,写入图形数据,具体可参考GraphicBuffer.cpp。
通过
glEGLImageTargetTexture2DOES
把EGLImageKHR
填充为纹理数据
glEGLImageTargetTexture2DOES(GL_TEXTURE_EXTERNAL_OES, static_cast(EGLImageKHR));
最后,使用
eglDestroyImageKHR
销毁EGLImageKHR
。
创建和销毁EGLImageKHR
的函数原型如下所示:
// 创建EGLImageKHR,在Android平台上,ctx可以是EGL_NO_CONTEXT,target是EGL_NATIVE_BUFFER_ANDROID,buffer是由GraphicBuffer创建来的。
EGLImageKHR eglCreateImageKHR(EGLDisplay dpy, EGLContext ctx, EGLenum target, EGLClientBuffer buffer, const EGLint *attrib_list)
// 销毁EGLImageKHR
EGLBoolean eglDestroyImageKHR(EGLDisplay dpy, EGLImageKHR image)
具体使用方式可参考GLConsumer::EglImage::createImage。
GLConsumer
内部封装了EglImage
类,负责GraphicBuffer
、EGLImageKHR
和OES纹理的处理逻辑,核心代码如下所示:
// EglImage根据GraphicBuffer创建EGLImageKHR,然后使用EGLImageKHR更新纹理,是GLConsumer中负责把从BufferQueue获取的GraphicBuffer,转换为纹理的工具类。
class EglImage : public LightRefBase<EglImage>{
public:
// 唯一的构造函数,接收一个GraphicBuffer参数
EglImage(sp<GraphicBuffer> graphicBuffer);
// 如果参数发生变更,则调用createImage创建内部的EGLImageKHR
status_t createIfNeeded(EGLDisplay display, const Rect& cropRect, bool forceCreate = false);
// 把EGLImageKHR绑定的GraphicBuffer图形数据上传到目标纹理
void bindToTextureTarget(uint32_t texTarget){
glEGLImageTargetTexture2DOES(texTarget, static_cast<GLeglImageOES>(mEglImage));
}
private:
// 创建内部的EGLImageKHR
EGLImageKHR createImage(EGLDisplay dpy, const sp<GraphicBuffer>& graphicBuffer, const Rect& crop);
// 用于创建EGLImageKHR的GraphicBuffer
sp<GraphicBuffer> mGraphicBuffer;
// 根据GraphicBuffer创建的EGLImageKHR
EGLImageKHR mEglImage;
// 创建EGLImageKHR需要的参数
EGLDisplay mEglDisplay;
// 创建EGLImageKHR时,使用的裁剪区域
Rect mCropRect;
}
总结
SurfaceTexture是离屏渲染的核心,例如:我们可以把SurfaceTexture设置给Camera接收摄像头图像数据,并转换为OES纹理,然后可以利用OpenGL对OES纹理做进一步特效处理,最后上屏或者录制成视频。所以,理解SurfaceTexture
底层原理有助于业务层开发和问题排查,希望本文对有心人有所帮助。
参考文档
Using GL_OES_EGL_image_external on Android https://gist.github.com/rexguo/6696123
EGL_KHR_image_base.txt https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_image_base.tx
来源:https://juejin.cn/post/6844904161645953038
-- END --
进技术交流群,扫码添加我的微信:Byte-Flow
获取相关资料和源码
推荐:
全网最全的 Android 音视频和 OpenGL ES 干货,都在这了
面试官:如何利用 Shader 实现 RGBA 到 NV21 图像格式转换?
项目疑难问题解答、大厂内部推荐、面试指导、简历指导、代码指导、offer 选择建议、学习路线规划,可以点击找我一对一解答。