告别对象检测图像数据手动标注的坑,用Anno-Mage半自动图像标注工具
共 1419字,需浏览 3分钟
·
2022-06-13 13:05
点击上方“小白学视觉”,选择加"星标"或“置顶”
重磅干货,第一时间送达
本文转载自:OpenCV学堂
01
引言
大家做对象检测模型训练与迁移学习时候,常常需要自己标注数据,特别是针对一些自定义的对象做标注的时候,标注数据是一项枯燥而且乏味的工作,虽然大家都知道标注数据工作很重要,特别是高质量的标注数据是模型取得良好效果的必要条件,但是毕竟是基础工作,很多CV开发者还是很不愿意干这个活的,手动标注考验耐心,让人崩溃!小编曾经标注了三天的数据就觉得很难受了,要想告别手动标注,有什么好工具,最近小编就发现一个很好的开源工具,可以实现半自动的对象检测数据标注,然后简单的人工检查一下就好啦,真的是大大降低人力成本与时间成本。这个神器就是Anno-Mage
Anno-Mage
安装该工具
git clone https://github.com/virajmavani/semi-auto-image-annotation-tool.git
依赖包版本要求:
Tensorflow >= 1.7.0
OpenCV = 3.x
Keras >= 2.1.3
Python >= 3.5
在clone代码库的基础上执行
pip install -r requirements.txt
即可安装全部依赖,此外windows下面需要VS2015 VC++库加持。
该工具通过一个通用模型对数据集进行检测,实现自定义对象的标注功能,这个通用模型默认为RetinaNet,基于MSCOCO训练生成,支持80个类别常见对象检测,通过它就可以实现80中常见对象自动标注,此外还支持add新对象检测模型,支持更多自定义对象检测网络,实现自定义对象检测数据集的自动/半自动标注任务。
该工具的用法与详细说明如下:
github的地址如下:
https://github.com/virajmavani/semi-auto-image-annotation-tool
好消息!
小白学视觉知识星球
开始面向外开放啦👇👇👇
下载1:OpenCV-Contrib扩展模块中文版教程 在「小白学视觉」公众号后台回复:扩展模块中文教程,即可下载全网第一份OpenCV扩展模块教程中文版,涵盖扩展模块安装、SFM算法、立体视觉、目标跟踪、生物视觉、超分辨率处理等二十多章内容。 下载2:Python视觉实战项目52讲 在「小白学视觉」公众号后台回复:Python视觉实战项目,即可下载包括图像分割、口罩检测、车道线检测、车辆计数、添加眼线、车牌识别、字符识别、情绪检测、文本内容提取、面部识别等31个视觉实战项目,助力快速学校计算机视觉。 下载3:OpenCV实战项目20讲 在「小白学视觉」公众号后台回复:OpenCV实战项目20讲,即可下载含有20个基于OpenCV实现20个实战项目,实现OpenCV学习进阶。 交流群
欢迎加入公众号读者群一起和同行交流,目前有SLAM、三维视觉、传感器、自动驾驶、计算摄影、检测、分割、识别、医学影像、GAN、算法竞赛等微信群(以后会逐渐细分),请扫描下面微信号加群,备注:”昵称+学校/公司+研究方向“,例如:”张三 + 上海交大 + 视觉SLAM“。请按照格式备注,否则不予通过。添加成功后会根据研究方向邀请进入相关微信群。请勿在群内发送广告,否则会请出群,谢谢理解~