【机器学习】微软出品!FLAML:一款可以自动化机器学习过程的神器!

机器学习初学者

共 3068字,需浏览 7分钟

 ·

2021-10-02 08:22

机器学习是我们使用一组算法解决来解决生活中问题的过程。创建机器学习模型很容易,但选择在泛化和性能方面都最适合的模型是一项艰巨的任务。

有多种机器学习算法可用于回归和分类,可根据我们要解决的问题来选择,但选择合适的模型是一个需要高计算成本、时间和精力的过程。

为解决上述问题,今天我给大家分享一款非常棒的工具包:FLAML,它是一个由微软开源的轻量级 Python 库,有助于自动、高效地找出最佳机器学习模型,不仅速度快,节省时间,而且设计轻巧。

让我们详细的介绍一下它吧…

安装所需的库

我们将首先使用 pip 安装来安装 FLAML。下面给出的命令将使用 pip 安装。

pip install flaml

导入所需的库

在这一步中,我们将导入创建机器学习模型和下载数据集所需的所有库。

from flaml import AutoML

解决分类问题

现在我们将从解决分类问题开始。我们将在这里使用的数据是著名的 Iris 数据集,可以从 Seaborn 库轻松加载。让我们开始创建模型。

#Loading the Dataset
from sklearn.datasets import load_iris

为 Automl 创建实例很重要,同时也定义 Automl 设置,因此在这一步中,我们还将创建 Automl 实例并定义设置。

automl = AutoML()
automl_settings = {
    "time_budget"10,  # in seconds
    "metric"'accuracy',
    "task"'classification'
}

接下来,我们将拆分数据并将其拟合到模型中。最后,我们还将使用模型进行预测并找到最佳模型。

X_train, y_train = load_iris(return_X_y=True)
# Train with labeled input data
automl.fit(X_train=X_train, y_train=y_train,
           **automl_settings)
print(automl.predict_proba(X_train).shape)
# Export the best model
print(automl.model)

在这里,我们可以清楚地看到 ExtraTreeEstimator 是此数据的最佳模型。现在让我们打印模型的最佳超参数和准确性。

print('Best ML leaner:', automl.best_estimator)
print('Best hyperparmeter config:', automl.best_config)
print('Best accuracy on validation data: {0:.4g}'.format(1-automl.best_loss))
print('Training duration of best run: {0:.4g} s'.format(automl.best_config_train_time))

同样,对于回归问题,我们也将遵循相同的过程。

解决回归问题

现在将解决一个回归问题。我们将在这里使用的数据是著名的波士顿数据集,可以从 Seaborn 库轻松加载。我们可以遵循与分类问题完全相同的过程。

from sklearn.datasets import load_boston

automl = AutoML()

automl_settings = {
    "time_budget"10,  # in seconds
    "metric"'r2',
    "task"'regression'
}
X_train, y_train = load_boston(return_X_y=True)
# Train with labeled input data
automl.fit(X_train=X_train, y_train=y_train,
           **automl_settings)
# Predict
print(automl.predict(X_train).shape)
# Export the best model
print(automl.model)
print('Best ML leaner:', automl.best_estimator)
print('Best hyperparmeter config:', automl.best_config)
print('Best accuracy on validation data: {0:.4g}'.format(1-automl.best_loss))
print('Training duration of best run: {0:.4g} s'.format(automl.best_config_train_time))

在这里,我们也可以清楚地看到回归问题的最佳模型和超参数。同样,你可以对你关注的数据集执行此过程,并找到最佳模型和超参数。


往期精彩回顾




本站qq群851320808,加入微信群请扫码:
浏览 51
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报
评论
图片
表情
推荐
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报