5种常用格式的数据输出,手把手教你用Pandas实现
大数据DT
共 4289字,需浏览 9分钟
·
2022-04-26 07:58
导读:任何原始格式的数据载入DataFrame后,都可以使用类似DataFrame.to_csv()的方法输出到相应格式的文件或者目标系统里。本文将介绍一些常用的数据输出目标格式。
df.to_csv('done.csv')
df.to_csv('data/done.csv') # 可以指定文件目录路径
df.to_csv('done.csv', index=False) # 不要索引
# 创建一个包含out.csv的压缩文件out.zip
compression_opts = dict(method='zip',
archive_name='out.csv')
df.to_csv('out.zip', index=False,
compression=compression_opts)
# 导出,可以指定文件路径
df.to_excel('path_to_file.xlsx')
# 指定sheet名,不要索引
df.to_excel('path_to_file.xlsx', sheet_name='Sheet1', index=False)
# 指定索引名,不合并单元格
df.to_excel('path_to_file.xlsx', index_label='label', merge_cells=False)
# 将多个df分不同sheet导入一个Excel文件中
with pd.ExcelWriter('path_to_file.xlsx') as writer:
df1.to_excel(writer, sheet_name='Sheet1')
df2.to_excel(writer, sheet_name='Sheet2')
# 指定操作引擎
df.to_excel('path_to_file.xlsx', sheet_name='Sheet1', engine='xlsxwriter')
# 在'engine'参数中设置ExcelWriter使用的引擎
writer = pd.ExcelWriter('path_to_file.xlsx', engine='xlsxwriter')
df.to_excel(writer)
writer.save()
# 设置系统引擎
from pandas import options # noqa: E402
options.io.excel.xlsx.writer = 'xlsxwriter'
df.to_excel('path_to_file.xlsx', sheet_name='Sheet1')
print(df.to_html())
print(df.to_html(columns=[0])) # 输出指定列
print(df.to_html(bold_rows=False)) # 表头不加粗
# 表格指定样式,支持多个
print(df.to_html(classes=['class1', 'class2']))
# 需要安装SQLAlchemy库
from sqlalchemy import create_engine
# 创建数据库对象,SQLite内存模式
engine = create_engine('sqlite:///:memory:')
# 取出表名为data的表数据
with engine.connect() as conn, conn.begin():
data = pd.read_sql_table('data', conn)
# data
# 将数据写入
data.to_sql('data', engine)
# 大量写入
data.to_sql('data_chunked', engine, chunksize=1000)
# 使用SQL查询
pd.read_sql_query('SELECT * FROM data', engine)
print(cdf.to_markdown())
'''
| | x | y | z |
|:---|----:|----:|----:|
| a | 1 | 2 | 3 |
| b | 4 | 5 | 6 |
| c | 7 | 8 | 9 |
'''
评论