数据资产目录建设实践
企业数据资产的数据管理需要数据资产框架来支撑数据资产的展示、记录、分析,通过数据资产框架可以明晰企业拥有的数据资产、实现数据资产安全分享、提升数据资产质量、实现数据资产变现等数据管理目标。
下面就来谈一谈数据资产框架中重要部分数据资产目录管理,通过数据资产目录的建设,实现对企业数据资产的有效管理。
1. 政策支持:
我们以数据治理较成熟的行业-银行业的相关数据管理政策中可以发现,从国家到银保监会,到中国人民银行,在2020至2021年间就发布相关指导政策,明确数据是生产要素,并给出了数据治理建设指引。
2. 企业需求
3. 发展趋势:数据资产管理正成为数据管理趋势之一
数据资产管理正成为数据管理工作的转型方向 数据资产化与数据资产管理的理念,进一步促进过去的数据管理工作向数据价值转化 以数据资产为导向的数据管理工作可以串联元数据、数据标准、数据模型、数据质量、数据安全等各项管理工作,引导数据价值在业务端的发挥 以客户为中心,以价值为导向,实现高效的数据资产服务体系与数据挖掘分析
1. 数据资产管理有三个方面表现,分别是管理视角、管理职能、组织体系
数据资产管理正成为数据管理工作的转型方向 数据资产化与数据资产管理的理念,进一步促进过去的数据管理工作向数据价值转化 以数据资产为导向的数据管理工作可以串联元数据、数据标准、数据模型、数据质量、数据安全等各项管理工作,引导数据价值在业务端的发挥 以客户为中心,以价值为导向,实现高效的数据资产服务体系与数据挖掘分析
1. 问题及建议
2. 建设步骤
第一步:资产梳理(数据资产盘点及补充完善数据资产信息)
第二步:框架设计(业务视角、行业模型、其他行业成功经验、业务标准)
第三步:数据标签设计(数据分类分级、数据共享、数据认责、数据脱敏、数据质量、业务流程、业务实体)
第四步:资产与目录关联
第五步:数据资产标签化(数据资产目录与数据标签形成网状数据检索体系)
第六步:平台管理
1. 数据标签与数据资产的关系
- 某金融公司数据资产管理案例 -
第一步:建设路径
第二步:目录构建
第三步:平台落地
推荐阅读:
评论