从零到壹系列之Opencv+dlib实现人脸检测与关键点定位
共 3290字,需浏览 7分钟
·
2021-02-17 15:19
点击上方“小白学视觉”,选择加"星标"或“置顶”
重磅干货,第一时间送达
今天我们聊一聊人脸检测和关键点定位问题。很多朋友可能会对这一块感兴趣,于是纷纷跑去研究SSD、YOLO、Faster RCNN等方法,最后花费了很久的时间,才搞出一个模型。又是数据,又是算法,搞得头大。
实际上,如果你是想搞算法,这样做是很值得推崇的。如果只是想做一些实验性的demo,感受一下人脸相关的一些业务,或者只是需要人脸检测这个步骤,但是对准确性要求没那么搞。那这里,我们推荐dlib库,直接进行人脸检测和关键点定位。
1. 安装dlib
pip install dlib
2. 下载训练模型
训练模型用于是人脸识别的关键,用于查找图片的关键点。
下载地址:http://dlib.net/files/
下载文件:shape_predictor_68_face_landmarks.dat.bz2
下载好模型和库之后,接下来就是编程部分。
# -*- coding: utf-8 -*-
import sys
import dlib
import cv2
detector = dlib.get_frontal_face_detector() #获取人脸分类器
# 传入的命令行参数
for f in sys.argv[1:]:
# opencv 读取图片,并显示
img = cv2.imread(f, cv2.IMREAD_COLOR)
# image is a numpy ndarray containing either an 8bit grayscale or RGB image.
# opencv读入的图片默认是bgr格式,我们需要将其转换为rgb格式;都是numpy的ndarray类。
b, g, r = cv2.split(img) # 分离三个颜色通道
img2 = cv2.merge([r, g, b]) # 融合三个颜色通道生成新图片
dets = detector(img, 1) #使用detector进行人脸检测 dets为返回的结果
print("Number of faces detected: {}".format(len(dets))) # 打印识别到的人脸个数
# enumerate是一个Python的内置方法,用于遍历索引
# index是序号;face是dets中取出的dlib.rectangle类的对象,包含了人脸的区域等信息
# left()、top()、right()、bottom()都是dlib.rectangle类的方法,对应矩形四条边的位置
for index, face in enumerate(dets):
print('face {}; left {}; top {}; right {}; bottom {}'.format(index, face.left(), face.top(), face.right(), face.bottom()))
# 在图片中标注人脸,并显示
left = face.left()
top = face.top()
right = face.right()
bottom = face.bottom()
cv2.rectangle(img, (left, top), (right, bottom), (0, 255, 0), 3)
cv2.namedWindow(f, cv2.WINDOW_AUTOSIZE)
cv2.imshow(f, img)
# 等待按键,随后退出,销毁窗口
k = cv2.waitKey(0)
cv2.destroyAllWindows()
---------------------
作者:hongbin_xu
来源:CSDN
原文:https://blog.csdn.net/hongbin_xu/article/details/78347484
人脸检测效果
#coding=utf-8
import cv2
import dlib
path = "img/meinv.png"
img = cv2.imread(path)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
#人脸分类器
detector = dlib.get_frontal_face_detector()
# 获取人脸检测器
predictor = dlib.shape_predictor(
"C:\\Python36\\Lib\\site-packages\\dlib-data\\shape_predictor_68_face_landmarks.dat"
)
dets = detector(gray, 1)
for face in dets:
shape = predictor(img, face) # 寻找人脸的68个标定点
# 遍历所有点,打印出其坐标,并圈出来
for pt in shape.parts():
pt_pos = (pt.x, pt.y)
cv2.circle(img, pt_pos, 2, (0, 255, 0), 1)
cv2.imshow("image", img)
cv2.waitKey(0)
cv2.destroyAllWindows()
代码转自:https://yq.aliyun.com/articles/629871
人脸关键点效果
1. 卷积神经网源码清单如下:
https://github.com/baihuaml/dl_code/blob/master/CNN_source_code.md
2. dlib人脸检测与关键点定位:
https://github.com/baihuaml/dl_code/blob/master/dlib_facedetection.py
https://github.com/baihuaml/dl_code/blob/master/dlib_facelandmark.py
交流群
欢迎加入公众号读者群一起和同行交流,目前有SLAM、三维视觉、传感器、自动驾驶、计算摄影、检测、分割、识别、医学影像、GAN、算法竞赛等微信群(以后会逐渐细分),请扫描下面微信号加群,备注:”昵称+学校/公司+研究方向“,例如:”张三 + 上海交大 + 视觉SLAM“。请按照格式备注,否则不予通过。添加成功后会根据研究方向邀请进入相关微信群。请勿在群内发送广告,否则会请出群,谢谢理解~