ICDAR 2021 公式检测冠军方案(代码)
共 3312字,需浏览 7分钟
·
2021-08-05 15:07
向AI转型的程序员都关注了这个号👇👇👇
机器学习AI算法工程 公众号:datayx
Searching in massive collections of digitized printed scientific documents with queries that are mathematical expressions is a research area scarcely explored. To address this problem, a crucial first step involves the detection of regions that may contain mathematical expressions. This contest aims to tackle this problem and thus, provide several reasons that could be interesting for attracting research groups to participate in this competition:
Groups researching in Mathematical Expression Recognition, at some point, need to address the problem of automatic detection of mathematical expressions in a document;
Participants in this contest will have access to a large labeled dataset;
The method of obtaining labeled data in the IBEM corpus is scalable, so it is expected to increase this collection in the future, and this new data could be used in future editions of this contest.
Method Description
We built our approach on FCOS, A simple and strong anchor-free object detector, with ResNeSt as our backbone, to detect embedded and isolated formulas. We employed ATSS as our sampling strategy instead of random sampling to eliminate the effects of sample imbalance. Moreover, we observed and revealed the influence of different FPN levels on the detection result. Generalized Focal Loss is adopted to our loss. Finally, with a series of useful tricks and model ensembles, our method was ranked 1st in the MFD task.
项目 代码 获取方式:
关注微信公众号 datayx 然后回复 公式 即可获取。
AI项目体验地址 https://loveai.tech
Prerequisites
Linux or macOS (Windows is in experimental support)
Python 3.6+
PyTorch 1.3+
CUDA 9.2+ (If you build PyTorch from source, CUDA 9.0 is also compatible)
GCC 5+
MMCV
This project is based on MMDetection-v2.7.0, mmcv-full>=1.1.5, <1.3 is needed.Note: You need to run pip uninstall mmcv
first if you have mmcv installed.If mmcv and mmcv-full are both installed, there will be ModuleNotFoundError
.
机器学习算法AI大数据技术
搜索公众号添加: datanlp
长按图片,识别二维码
阅读过本文的人还看了以下文章:
基于40万表格数据集TableBank,用MaskRCNN做表格检测
《深度学习入门:基于Python的理论与实现》高清中文PDF+源码
2019最新《PyTorch自然语言处理》英、中文版PDF+源码
《21个项目玩转深度学习:基于TensorFlow的实践详解》完整版PDF+附书代码
PyTorch深度学习快速实战入门《pytorch-handbook》
【下载】豆瓣评分8.1,《机器学习实战:基于Scikit-Learn和TensorFlow》
李沐大神开源《动手学深度学习》,加州伯克利深度学习(2019春)教材
【Keras】完整实现‘交通标志’分类、‘票据’分类两个项目,让你掌握深度学习图像分类
如何利用全新的决策树集成级联结构gcForest做特征工程并打分?
Machine Learning Yearning 中文翻译稿
斯坦福CS230官方指南:CNN、RNN及使用技巧速查(打印收藏)
中科院Kaggle全球文本匹配竞赛华人第1名团队-深度学习与特征工程
不断更新资源
深度学习、机器学习、数据分析、python
搜索公众号添加: datayx