图神经网络从入门到入门
![](https://filescdn.proginn.com/de37bfb67781e949f7dbd9350e88823d/8ae3f771107c53c376609694248a982b.webp)
极市导读
本文从一个更直观的角度对当前经典流行的GNN网络,包括GCN、GraphSAGE、GAT、GAE以及graph pooling策略DiffPool等等做一个简单的小结。
笔者注:行文如有错误或者表述不当之处,还望批评指正!
一、为什么需要图神经网络?
![](https://filescdn.proginn.com/94b2d93a0d5b7dfca9f4aa9e3337d350/6a27973bbe80e14183214ad95462fcf2.webp)
![](https://filescdn.proginn.com/b143de5a0d43546dff096992d589d9ca/e6f5965c1fc128b1170e91b11595d84a.webp)
-
图的大小是任意的,图的拓扑结构复杂,没有像图像一样的空间局部性 -
图没有固定的节点顺序,或者说没有一个参考节点 -
图经常是动态图,而且包含多模态的特征
二. 图神经网络是什么样子的?
![](https://filescdn.proginn.com/47380aacc6a11046c733b7d04a25297f/460a5335d0c6f21113ca53b4c7748993.webp)
![](https://filescdn.proginn.com/9201a9ffa4481f5549279bf41e80e9dd/cc065066f4b26ca9943b8968ee7af74a.webp)
三、图神经网络的几个经典模型与发展
![](https://filescdn.proginn.com/f5ab362f07d141e9121344b01c1c8eef/cd6de7141c225e1cd10da61b6f116afb.webp)
![](https://filescdn.proginn.com/d12b7cd06a21d30ec3dbac7387e53fa7/6e4569ab357f1ea4adb23e9763138048.webp)
![](https://filescdn.proginn.com/dd6d051ba836e53485510ab93107cc3d/9edd1e54f92e51af1d09866796fc5efe.webp)
![](https://filescdn.proginn.com/3ef79027184bad250d09ff075d9269e1/5415d8a65dece9492694901b9944a4c4.webp)
![](https://filescdn.proginn.com/d159b87c1f7268e04f7a2741a572098b/ecf675b57041152f3720db1dd451ccdd.webp)
![](https://filescdn.proginn.com/93aa191627dcbacaf9c00bea5fcc8103/ec6f5564f7cb62d69445f1a33c85a635.webp)
![](https://filescdn.proginn.com/4ab2f3dd8d95772fdb319fa71dd60e46/ef639bc88887cf425616cdbd621c709d.webp)
![](https://filescdn.proginn.com/09ae73e44e6e7c0bf359b186eb2af737/8172b3c4d2191341bf4b87791f40f784.webp)
![](https://filescdn.proginn.com/3654575cb76dfc18d8deadbc40c098bb/cb21c5cc5e8d2b019d0176ffcdbbed8e.webp)
![](https://filescdn.proginn.com/3544b658f2b56d9e0d90d9900b28687a/788653a106d643480c0a9695e0261a33.webp)
![](https://filescdn.proginn.com/8d371621ea8b30960a5dfd826b5235f2/124f0caefb4461475c0af34b8a7dcf45.webp)
![](https://filescdn.proginn.com/91c2468a6aa26d5375b588495e2d4000/9a91dca38e3c6f679b1cecb5dc65fa8c.webp)
![](https://filescdn.proginn.com/4d4626896003dc6240ede45138fde717/ba0fbea1acd140c3c8978db5be974c05.webp)
![](https://filescdn.proginn.com/e7b2d24ab372d4df7cf101c368624286/8d7aa61045996eba157f7e15830aed70.webp)
![](https://filescdn.proginn.com/d8705065c0e14333f6ef715e6e7e325c/bf80821aa758988b9c01f1dbb09f8cc9.webp)
![](https://filescdn.proginn.com/0153201f82ebd03105891547ed47ee5a/df6d1a3b98fcf4d8d242f4853bfe8ca9.webp)
-
Graph Auto-Encoder(GAE)[10]
![](https://filescdn.proginn.com/19686ad631f6996b9cfc70de4d8014c7/aa4a6f9270c5e5ebda2840a4e841cdfb.webp)
![](https://filescdn.proginn.com/f3c08ef0e23e8e77ed57eb8e36e6dc79/8f4afcf9c1242e52875a7f87b8ec4edf.webp)
![](https://filescdn.proginn.com/7cf31d20423207966dd340ca0d3d59cb/41275eddbd529bb11d4f8c76a178d571.webp)
![](https://filescdn.proginn.com/2ba0e1ba62d15b487b410e1a6c728197/fc6639322e51f4bdf9ccebe1a77c3d5e.webp)
![](https://filescdn.proginn.com/e42bd048df54ef464b93350987594e87/566981894d5dca8087e6cb7ca38120ad.webp)
-
分配矩阵的学习
![](https://filescdn.proginn.com/12c9bf17bb3d8a57b7d4aa82130e0211/7236da5188769157c6db7260e4a10af5.webp)
-
池化分配矩阵
![](https://filescdn.proginn.com/db3ad6dc58610f7a3d2f563aeb1eb48a/4e56b4597444e8ad4d73052880068b13.webp)
![](https://filescdn.proginn.com/0133882a585bd54f0de0e983631a84b8/45b56e85fe6607c24301f49bf0d6e744.webp)
![](https://filescdn.proginn.com/05bc005141ea15dd3eec6b24bf3c0ddb/02081460c8eccd62027f2ac34450dac0.webp)
![](https://filescdn.proginn.com/ba86084b81175a361b6f233fba8ffdcf/8b0af8cdf1b2fcecdf267f55d1e6b19d.webp)
![](https://filescdn.proginn.com/78d86c65e57d95394f3f4d8613156258/a0e41ee7763205edacdc06961305eae4.webp)
参考
本文亮点总结
如果觉得有用,就请分享到朋友圈吧!
公众号后台回复“pytorch”获取Pytorch 官方书籍英文版电子版~
![](https://filescdn.proginn.com/2748c487e4a98a62ae68aa701d8ff8a0/16e96c227b4b1e4ca599ded8e4bb3f30.webp)
# CV技术社群邀请函 #
备注:姓名-学校/公司-研究方向-城市(如:小极-北大-目标检测-深圳)
即可申请加入极市目标检测/图像分割/工业检测/人脸/医学影像/3D/SLAM/自动驾驶/超分辨率/姿态估计/ReID/GAN/图像增强/OCR/视频理解等技术交流群
每月大咖直播分享、真实项目需求对接、求职内推、算法竞赛、干货资讯汇总、与 10000+来自港科大、北大、清华、中科院、CMU、腾讯、百度等名校名企视觉开发者互动交流~
![](https://filescdn.proginn.com/9c026f25c10d2078898d20af31c42890/7909ad18d90f2f021ca9bff0fe319684.webp)
评论