电子书丨《推荐系统算法实践》

共 615字,需浏览 2分钟

 ·

2021-10-28 22:09



《推荐系统算法实践》

/ 黄美灵

电子书售价:44.5元

2019年10月出版


本书主要讲解推荐系统中的召回算法和排序算法,以及各个算法在主流工具Sklearn、Spark、TensorFlow等中的实现和应用。
书中本着循序渐进的原则进行讲解。首先,介绍推荐系统中推荐算法的数学基础,推荐算法的平台、工具基础,以及具体的推荐系统。其次,讲解推荐系统中的召回算法,主要包括基于行为相似的协同过滤召回和基于内容相似的Word2vec召回,并且介绍其在Spark、TensorFlow主流工具中的实现与应用。再次,讲解推荐系统中的排序算法,包括线性模型、树模型和深度学习模型,分别介绍逻辑回归、FM、决策树、随机森林、GBDT、GBDT+LR、集成学习、深度森林、DNN、Wide & Deep、DeepFM、YouTube推荐等模型的原理,以及其在Sklearn、Spark、TensorFlow主流工具中的实现与应用。最后,介绍推荐算法的4个实践案例,帮助读者进行工程实践和应用,并且介绍如何在Notebook上进行代码开发和算法调试,以帮助读者提升工作效率。




▼ 点击阅读原文,立刻下单!

浏览 29
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报
评论
图片
表情
推荐
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报