【深度学习】神经网络模型特征重要性可以查看了!!!
机器学习初学者
共 1443字,需浏览 3分钟
·
2021-10-13 07:42
查看NN模型特征重要性的技巧
我们都知道树模型的特征重要性是非常容易绘制出来的,只需要直接调用树模型自带的API即可以得到在树模型中每个特征的重要性,那么对于神经网络我们该如何得到其特征重要性呢?
本篇文章我们就以LSTM为例,来介绍神经网络中模型特征重要性的一种获取方式。
基本思路
该策略的思想来源于:Permutation Feature Importance,我们以特征对于模型最终预测结果的变化来衡量特征的重要性。
实现步骤
NN模型特征重要性的获取步骤如下:
训练一个NN; 每次获取一个特征列,然后对其进行随机shuffle,使用模型对其进行预测并得到Loss; 记录每个特征列以及其对应的Loss; 每个Loss就是该特征对应的特征重要性,如果Loss越大,说明该特征对于NN模型越加重要;反之,则越加不重要。
代码摘自:https://www.kaggle.com/cdeotte/lstm-feature-importance/notebook
import matplotlib.pyplot as plt
from tqdm.notebook import tqdm
import tensorflow as tf
from tensorflow import keras
import tensorflow.keras.backend as K
from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint
from tensorflow.keras.callbacks import LearningRateScheduler, ReduceLROnPlateau
from tensorflow.keras.optimizers.schedules import ExponentialDecay
from sklearn.metrics import mean_absolute_error as mae
from sklearn.preprocessing import RobustScaler, normalize
from sklearn.model_selection import train_test_split, GroupKFold, KFold
from IPython.display import display
COMPUTE_LSTM_IMPORTANCE = 1
ONE_FOLD_ONLY = 1
with gpu_strategy.scope():
kf = KFold(n_splits=NUM_FOLDS, shuffle=True, random_state=2021)
test_preds = []
for fold, (train_idx, test_idx) in enumerate(kf.split(train, targets)):
K.clear_session()
print('-'*15, '>', f'Fold {fold+1}', '<', '-'*15)
X_train, X_valid = train[train_idx], train[test_idx]
y_train, y_valid = targets[train_idx], targets[test_idx]
# 导入已经训练好的模型
model = keras.models.load_model('models/XXX.h5')
# 计算特征重要性
if COMPUTE_LSTM_IMPORTANCE:
results = []
print(' Computing LSTM feature importance...')
for k in tqdm(range(len(COLS))):
if k>0:
save_col = X_valid[:,:,k-1].copy()
np.random.shuffle(X_valid[:,:,k-1])
oof_preds = model.predict(X_valid, verbose=0).squeeze()
mae = np.mean(np.abs( oof_preds-y_valid ))
results.append({'feature':COLS[k],'mae':mae})
if k>0:
X_valid[:,:,k-1] = save_col
# 展示特征重要性
print()
df = pd.DataFrame(results)
df = df.sort_values('mae')
plt.figure(figsize=(10,20))
plt.barh(np.arange(len(COLS)),df.mae)
plt.yticks(np.arange(len(COLS)),df.feature.values)
plt.title('LSTM Feature Importance',size=16)
plt.ylim((-1,len(COLS)))
plt.show()
# SAVE LSTM FEATURE IMPORTANCE
df = df.sort_values('mae',ascending=False)
df.to_csv(f'lstm_feature_importance_fold_{fold}.csv',index=False)
# ONLY DO ONE FOLD
if ONE_FOLD_ONLY: break
https://www.kaggle.com/cdeotte/lstm-feature-importance/notebook Permutation Feature Importance
往期精彩回顾 本站qq群851320808,加入微信群请扫码:
评论