神经网络基础知识总结
机器学习实验室
共 3370字,需浏览 7分钟
·
2020-11-04 03:52
导读
人工神经网络通常通过一个基于数学统计学类型的学习方法得以优化,本文详细的介绍了神经网络的定义以及相关运算模型的知识点。
一、神经网络简介
1.1 隐藏层
1.2 激活函数
1.3 小结
一组节点,类似于神经元,位于层中。 一组权重,表示每个神经网络层与其下方的层之间的关系。下方的层可能是另一个神经网络层,也可能是其他类型的层。 一组偏差,每个节点一个偏差。 一个激活函数,对层中每个节点的输出进行转换。不同的层可能拥有不同的激活函数。
二、训练神经网络
2.1 失败案例
2.2 丢弃正则化
0.0 = 无丢弃正则化。 1.0 = 丢弃所有内容。模型学不到任何规律。
三、多类别神经网络
3.1 一对多(OnevsAll)
这是一张苹果的图片吗?不是。 这是一张熊的图片吗?不是。 这是一张糖果的图片吗?不是。 这是一张狗狗的图片吗?是。 这是一张鸡蛋的图片吗?不是。
四、Softmax
4.1 Softmax 选项
完整 Softmax 是我们一直以来讨论的 Softmax;也就是说,Softmax 针对每个可能的类别计算概率。 候选采样指 Softmax 针对所有正类别标签计算概率,但仅针对负类别标签的随机样本计算概率。例如,如果我们想要确定某个输入图片是小猎犬还是寻血猎犬图片,则不必针对每个非狗狗样本提供概率。
五、一个标签与多个标签
你不能使用 Softmax。 你必须依赖多个逻辑回归。
往期精彩:
求个在看!
评论