探讨 | 目前SLAM存在的问题

共 4251字,需浏览 9分钟

 ·

2021-06-19 15:19


点击上方小白学视觉”,选择加"星标"或“置顶

重磅干货,第一时间送达

本文转自|计算机视觉联盟
又到了每周组会的时间了,这周主要是收集了现在领域当中SLAM存在的一些开放性问题以及在学习SLAM14讲。
之前说要做SLAM,实际上连SLAM现在发展得怎么样,有什么瓶颈,目前有什么已经落地的产品实际上都不了解,所以这一周除了上课的时间(PS:课是真的多,我说我周一6节,周二4节,周三六节,周四两节,周五4节,还有一大堆作业,这学期的作业还一大堆仿真题,现代数字信号处理有点难啊。留给科研的时间不多了)。

在收集资料的过程当中,也认识了好多大牛,先整理一波材料的来源:

  • 会议:

RSS,ICRA,CVRR.ECCV...

  • 论文:

[1]Past, Present, and Future of Simultaneous Localization And Mapping: Towards the Robust-Perception Age 
[2]The SLAM problem: a survey 
[3]Simultaneous Localization and Mapping : A Survey of Current Trends in Autonomous Driving(未看,IEEE Transactions on intelligent vehicles)
[4]A Survey of the State-of-the-Art Localization Techniques and Their Potentials for Autonomous Vehicle Applications
(听说列了论文不列出来哪个会议,属于哪个类就是耍流氓,先耍以下流氓,下次看的论文会附上),例如这个样子:


  • 工作坊

ICCV Workshop (Workshop的东西短小精悍)
  • 实验室

慕尼黑工业大学(TUM),麻省理工大学(MIT),帝国理工大学(IDG),卡内基-梅隆大学(CMU),德国弗莱堡大学(Freiburg) , 西班牙萨拉戈萨大学(Zaragoza)

从阅读的内容来看,包括了讲解SLAM这30年的发展历史,以及视觉SLAM的15年,接下来又抛出一些开放性问题等待各位工作于SLAM人士的智慧来解决。



John Leonard 大神从这30年的文章中,每年选取一两篇具有代表性的文章,或者产品,或者书籍,来描述SLAM的发展,让我们开始把

1999 A Solution to the Simultaneous Localization and Map Building Problem(Dissayanake,Newman,etal.) 
1999 Loop-Closing – Gutmann and Konolige
2000 Probabilistic Algorithms and the Interactive Museum Tour-Guide Robot Minerva – Thrun et al
2001 Optimization of the Simultaneous Localization and Map Building Algorithm for Real Time Implemention (Guivant and Nebot)
2002 Real-time SLAM using laser Paul Newman (ICRA 2002) MIT 这个机器人看起来已经实现了室内定位
2002 Montemerlo and Thrun, FastSLAM (FastSLAM: A Factored Solution to the Simultaneous Localization and Mapping Problem, AAAI 2002 )
2003 An Atlas Framework for Scalable Mapping (Bosse) ICRA
2004 Vision-based SLAM using Poses and Images (Ryan Eustice and Hanu Singh) 做导航船的,相机做约束
2005 Probablistic ROBOTICS Thrun, Burgard and Fox, MIT Press 
2006 Smoothing and Mapping(SAM)因子图要诞生了,刚下载了他们程序,想下周看看
2007 A Tree Parameterization for Efficiently Computing Maximum Likelihood Maps using Gradient Descent (没看懂他的重要) rss2007
2007 Parallel Tracking and Mapping (PTAM)Klein and Murray 【ISMAR最佳论文奖】 2015年的ORB-SLAM前身
2008 FrameSLAM: From Bundle Adjustment to Real-Time Visual Mapping (Konolige and Agarwal) 
2009 FAB-MAP: Probabilistic Localization and Mapping in the Space of Appearance Mark Cumminsb and Paul Newman (这个之后再看看是啥)
2010 Sibley et al. – Relative Bundle Adjustment/VSLAM 
 2011 KinectFusion – Izadi, Necombe et al. 
2012 KinLnuous (Whelan, McDonald et al.) Extension pf KincectFusion (RSS 2012 RGB-D Workshop) 
2013 SLAM++ CVPR2013最佳论文好像
2013 KinLnous Processing Pipeline (“Cloud Slices” connected to pose graph SLAM optimization) 这个后面可以看下
2014 Google Tango - Journey Pollefeys et al.(之前听老师讲有创业公司想做这种视觉手持SLAM,然后还要拿得直力拿着,这两天看到Tan'go,想着这不久是Tango嘛,而且Tango还可以晃动呢)
2015 Kintinuous with Stereo – Walking over Stairs 

我看来,vslam得发展也就是从MonoSLAM->PTAM->图优化SLAM->ORB-SLAM为代表的现代slam,其中可能还有许多内容,不过这些开源SLAM一定程度上体现了SLAM发展过程了....

关于SLAM是否被解决,如果是针对某一场景,特定的任务,可以说SLAM已经被解决,但是如果我们是说任何环境,那么SLAM还是存在许多开放性的问题的。

vSLAM 现有的产品有:Google Tango ,Microsoft HoloLens, ARKit,ARCODE等等

vSLAM现在存在的问题有:

Life-long SLAM(如何实现长距离的SLAM呢)
Map Representation (地图应该怎么表示,毕竟计算资源有限)
Large-Scale(特征和超大地图怎么进行匹配)
多机SLAM(如果要探索一块区域,多个机器人绘制的地图如何形成全局一致性地图呢)



对于vslam,会存在这些问题,光照变化,天气情况,以及季节变化,导致路面情况发生很大的变化,如果这时候做特征匹配的话,就会失败。目前的解决方案有SeqSLAM->Fast SeqSLAM ->Semantic Enhanced SLAM


以上大概就是SLAM领域中开放的问题的。

哎,今天说了这些问题,老师问那你想做哪个问题,我还真的懵逼了,我也不太清楚,本来只是想做了传感器融合水以下论文的,不过老师好像要我们能够解决这个领域中的某个特定的问题,现在也还没想法,噗噗噗,感觉都挺难的。结合New传感器,其实效果也不一定会提升,水水水~~~

提问:如果是你的话,你会怎么处理这些问题呢?

想法是:先把图像进行增强,然后再做特征匹配。对于有雾的情况,先进行去雾再进行匹配,去雾算法好像何凯明有篇论文做的效果非常好。这些开放性的问题值得我们平时没事就思考思考.


END


下载1:OpenCV-Contrib扩展模块中文版教程
在「小白学视觉」公众号后台回复:扩展模块中文教程即可下载全网第一份OpenCV扩展模块教程中文版,涵盖扩展模块安装、SFM算法、立体视觉、目标跟踪、生物视觉、超分辨率处理等二十多章内容。

下载2:Python视觉实战项目52讲
小白学视觉公众号后台回复:Python视觉实战项目即可下载包括图像分割、口罩检测、车道线检测、车辆计数、添加眼线、车牌识别、字符识别、情绪检测、文本内容提取、面部识别等31个视觉实战项目,助力快速学校计算机视觉。

下载3:OpenCV实战项目20讲
小白学视觉公众号后台回复:OpenCV实战项目20讲即可下载含有20个基于OpenCV实现20个实战项目,实现OpenCV学习进阶。

交流群


欢迎加入公众号读者群一起和同行交流,目前有SLAM、三维视觉、传感器自动驾驶、计算摄影、检测、分割、识别、医学影像、GAN算法竞赛等微信群(以后会逐渐细分),请扫描下面微信号加群,备注:”昵称+学校/公司+研究方向“,例如:”张三 + 上海交大 + 视觉SLAM“。请按照格式备注,否则不予通过。添加成功后会根据研究方向邀请进入相关微信群。请勿在群内发送广告,否则会请出群,谢谢理解~


浏览 52
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报
评论
图片
表情
推荐
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报