吊打 ThreadLocal,谈谈FastThreadLocal为啥能这么快?

共 15786字,需浏览 32分钟

 ·

2021-09-17 21:33

点击关注公众号,Java干货及时送达

1、FastThreadLocal的引入背景和原理简介

既然jdk已经有ThreadLocal,为何netty还要自己造个FastThreadLocal?FastThreadLocal快在哪里?

这需要从jdk ThreadLocal的本身说起。如下图:

在java线程中,每个线程都有一个ThreadLocalMap实例变量(如果不使用ThreadLocal,不会创建这个Map,一个线程第一次访问某个ThreadLocal变量时,才会创建)。

该Map是使用线性探测的方式解决hash冲突的问题,如果没有找到空闲的slot,就不断往后尝试,直到找到一个空闲的位置,插入entry,这种方式在经常遇到hash冲突时,影响效率。

FastThreadLocal(下文简称ftl)直接使用数组避免了hash冲突的发生,具体做法是:每一个FastThreadLocal实例创建时,分配一个下标index;分配index使用AtomicInteger实现,每个FastThreadLocal都能获取到一个不重复的下标。

当调用ftl.get()方法获取值时,直接从数组获取返回,如return array[index],如下图:

2、实现源码分析

根据上文图示可知,ftl的实现,涉及到InternalThreadLocalMap、FastThreadLocalThread和FastThreadLocal几个类,自底向上,我们先从InternalThreadLocalMap开始分析。

InternalThreadLocalMap类的继承关系图如下:

2.1 UnpaddedInternalThreadLocalMap的主要属性

static final ThreadLocal<InternalThreadLocalMap> slowThreadLocalMap = new ThreadLocal<InternalThreadLocalMap>();
static final AtomicInteger nextIndex = new AtomicInteger();
Object[] indexedVariables;

数组indexedVariables就是用来存储ftl的value的,使用下标的方式直接访问。nextIndex在ftl实例创建时用来给每个ftl实例分配一个下标,slowThreadLocalMap在线程不是ftlt时使用到。

2.2 InternalThreadLocalMap分析

InternalThreadLocalMap的主要属性:

// 用于标识数组的槽位还未使用
public static final Object UNSET = new Object();
/**
 * 用于标识ftl变量是否注册了cleaner
 * BitSet简要原理:
 * BitSet默认底层数据结构是一个long[]数组,开始时长度为1,即只有long[0],而一个long有64bit。
 * 当BitSet.set(1)的时候,表示将long[0]的第二位设置为true,即0000 0000 ... 0010(64bit),则long[0]==2
 * 当BitSet.get(1)的时候,第二位为1,则表示true;如果是0,则表示false
 * 当BitSet.set(64)的时候,表示设置第65位,此时long[0]已经不够用了,扩容处long[1]来,进行存储
 *
 * 存储类似 {index:boolean} 键值对,用于防止一个FastThreadLocal多次启动清理线程
 * 将index位置的bit设为true,表示该InternalThreadLocalMap中对该FastThreadLocal已经启动了清理线程
 */

private BitSet cleanerFlags; 
private InternalThreadLocalMap() {
        super(newIndexedVariableTable());
}

private static Object[] newIndexedVariableTable() {
        Object[] array = new Object[32];
        Arrays.fill(array, UNSET);
        return array;
}

比较简单,newIndexedVariableTable()方法创建长度为32的数组,然后初始化为UNSET,然后传给父类。之后ftl的值就保存到这个数组里面。

注意,这里保存的直接是变量值,不是entry,这是和jdk ThreadLocal不同的。InternalThreadLocalMap就先分析到这,其他方法在后面分析ftl再具体说。

2.3 ftlt的实现分析

要发挥ftl的性能优势,必须和ftlt结合使用,否则就会退化到jdk的ThreadLocal。ftlt比较简单,关键代码如下:

public class FastThreadLocalThread extends Thread {
  // This will be set to true if we have a chance to wrap the Runnable.
  private final boolean cleanupFastThreadLocals;
  
  private InternalThreadLocalMap threadLocalMap;
  
  public final InternalThreadLocalMap threadLocalMap() {
        return threadLocalMap;
  }
  public final void setThreadLocalMap(InternalThreadLocalMap threadLocalMap) {
        this.threadLocalMap = threadLocalMap;
  }
}  

ftlt的诀窍就在threadLocalMap属性,它继承java Thread,然后聚合了自己的InternalThreadLocalMap。后面访问ftl变量,对于ftlt线程,都直接从InternalThreadLocalMap获取变量值。

2.4 ftl实现分析

ftl实现分析基于netty-4.1.34版本,特别地声明了版本,是因为在清除的地方,该版本的源码已经注释掉了ObjectCleaner的调用,和之前的版本有所不同。

2.4.1 ftl的属性和实例化
private final int index;

public FastThreadLocal() {
    index = InternalThreadLocalMap.nextVariableIndex();
}

非常简单,就是给属性index赋值,赋值的静态方法在InternalThreadLocalMap:

 public static int nextVariableIndex() {
        int index = nextIndex.getAndIncrement();
        if (index < 0) {
            nextIndex.decrementAndGet();
            throw new IllegalStateException("too many thread-local indexed variables");
        }
        return index;
  }

可见,每个ftl实例以步长为1的递增序列,获取index值,这保证了InternalThreadLocalMap中数组的长度不会突增。

2.4.2 get()方法实现分析
public final V get() {
    InternalThreadLocalMap threadLocalMap = InternalThreadLocalMap.get(); // 1
    Object v = threadLocalMap.indexedVariable(index); // 2
    if (v != InternalThreadLocalMap.UNSET) {
        return (V) v;
    }

    V value = initialize(threadLocalMap); // 3
    registerCleaner(threadLocalMap);  // 4
    return value;
}

1.先来看看InternalThreadLocalMap.get()方法如何获取threadLocalMap:

=======================InternalThreadLocalMap=======================  
  public static InternalThreadLocalMap get() {
        Thread thread = Thread.currentThread();
        if (thread instanceof FastThreadLocalThread) {
            return fastGet((FastThreadLocalThread) thread);
        } else {
            return slowGet();
        }
    }
    
  private static InternalThreadLocalMap fastGet(FastThreadLocalThread thread) {
        InternalThreadLocalMap threadLocalMap = thread.threadLocalMap();
        if (threadLocalMap == null) {
            thread.setThreadLocalMap(threadLocalMap = new InternalThreadLocalMap());
        }
        return threadLocalMap;
    }    

因为结合FastThreadLocalThread使用才能发挥FastThreadLocal的性能优势,所以主要看fastGet方法。该方法直接从ftlt线程获取threadLocalMap,还没有则创建一个InternalThreadLocalMap实例并设置进去,然后返回。

2.threadLocalMap.indexedVariable(index)就简单了,直接从数组获取值,然后返回:

  public Object indexedVariable(int index) {
        Object[] lookup = indexedVariables;
        return index < lookup.length? lookup[index] : UNSET;
    }

3.如果获取到的值不是UNSET,那么是个有效的值,直接返回。如果是UNSET,则初始化。

initialize(threadLocalMap)方法:

  private V initialize(InternalThreadLocalMap threadLocalMap) {
        V v = null;
        try {
            v = initialValue();
        } catch (Exception e) {
            PlatformDependent.throwException(e);
        }

        threadLocalMap.setIndexedVariable(index, v); // 3-1
        addToVariablesToRemove(threadLocalMap, this); // 3-2
        return v;
    }

3.1.获取ftl的初始值,然后保存到ftl里的数组,如果数组长度不够则扩充数组长度,然后保存,不展开。

3.2.addToVariablesToRemove(threadLocalMap, this)的实现,是将ftl实例保存在threadLocalMap内部数组第0个元素的Set集合中。

此处不贴代码,用图示如下:

4.registerCleaner(threadLocalMap)的实现,netty-4.1.34版本中的源码:

private void registerCleaner(final InternalThreadLocalMap threadLocalMap) {
        Thread current = Thread.currentThread();
        if (FastThreadLocalThread.willCleanupFastThreadLocals(current) || threadLocalMap.isCleanerFlagSet(index)) {
            return;
        }

        threadLocalMap.setCleanerFlag(index);

        // TODO: We need to find a better way to handle this.
        /*
        // We will need to ensure we will trigger remove(InternalThreadLocalMap) so everything will be released
        // and FastThreadLocal.onRemoval(...) will be called.
        ObjectCleaner.register(current, new Runnable() {
            @Override
            public void run() {
                remove(threadLocalMap);

                // It's fine to not call InternalThreadLocalMap.remove() here as this will only be triggered once
                // the Thread is collected by GC. In this case the ThreadLocal will be gone away already.
            }
        });
        */

}

由于ObjectCleaner.register这段代码在该版本已经注释掉,而余下逻辑比较简单,因此不再做分析。

2.5 普通线程使用ftl的性能退化

随着get()方法分析完毕,set(value)方法原理也呼之欲出,限于篇幅,不再单独分析。

前文说过,ftl要结合ftlt才能最大地发挥其性能,如果是其他的普通线程,就会退化到jdk的ThreadLocal的情况,因为普通线程没有包含InternalThreadLocalMap这样的数据结构,接下来我们看如何退化。

从InternalThreadLocalMap的get()方法看起:

=======================InternalThreadLocalMap=======================  
  public static InternalThreadLocalMap get() {
        Thread thread = Thread.currentThread();
        if (thread instanceof FastThreadLocalThread) {
            return fastGet((FastThreadLocalThread) thread);
        } else {
            return slowGet();
        }
    }

  private static InternalThreadLocalMap slowGet() {
       // 父类的类型为jdk ThreadLocald的静态属性,从该threadLocal获取InternalThreadLocalMap
        ThreadLocal<InternalThreadLocalMap> slowThreadLocalMap = UnpaddedInternalThreadLocalMap.slowThreadLocalMap;
        InternalThreadLocalMap ret = slowThreadLocalMap.get();
        if (ret == null) {
            ret = new InternalThreadLocalMap();
            slowThreadLocalMap.set(ret);
        }
        return ret;
    }

从ftl看,退化操作的整个流程是:从一个jdk的ThreadLocal变量中获取InternalThreadLocalMap,然后再从InternalThreadLocalMap获取指定数组下标的值,对象关系示意图:

3、ftl的资源回收机制

在netty中对于ftl提供了三种回收机制:

自动: 使用ftlt执行一个被FastThreadLocalRunnable wrap的Runnable任务,在任务执行完毕后会自动进行ftl的清理。

手动: ftl和InternalThreadLocalMap都提供了remove方法,在合适的时候用户可以(有的时候也是必须,例如普通线程的线程池使用ftl)手动进行调用,进行显示删除。

自动: 为当前线程的每一个ftl注册一个Cleaner,当线程对象不强可达的时候,该Cleaner线程会将当前线程的当前ftl进行回收。(netty推荐如果可以用其他两种方式,就不要再用这种方式,因为需要另起线程,耗费资源,而且多线程就会造成一些资源竞争,在netty-4.1.34版本中,已经注释掉了调用ObjectCleaner的代码。)

4、ftl在netty中的使用

ftl在netty中最重要的使用,就是分配ByteBuf。基本做法是:每个线程都分配一块内存(PoolArena),当需要分配ByteBuf时,线程先从自己持有的PoolArena分配,如果自己无法分配,再采用全局分配。

但是由于内存资源有限,所以还是会有多个线程持有同一块PoolArena的情况。不过这种方式已经最大限度地减轻了多线程的资源竞争,提高程序效率。

具体的代码在PoolByteBufAllocator的内部类PoolThreadLocalCache中:

  final class PoolThreadLocalCache extends FastThreadLocal<PoolThreadCache{

    @Override
        protected synchronized PoolThreadCache initialValue() {
            final PoolArena<byte[]> heapArena = leastUsedArena(heapArenas);
            final PoolArena<ByteBuffer> directArena = leastUsedArena(directArenas);

            Thread current = Thread.currentThread();
            if (useCacheForAllThreads || current instanceof FastThreadLocalThread) {
              // PoolThreadCache即为各个线程持有的内存块的封装  
              return new PoolThreadCache(
                        heapArena, directArena, tinyCacheSize, smallCacheSize, normalCacheSize,
                        DEFAULT_MAX_CACHED_BUFFER_CAPACITY, DEFAULT_CACHE_TRIM_INTERVAL);
            }
            // No caching so just use 0 as sizes.
            return new PoolThreadCache(heapArena, directArena, 00000);
        }
    }   
(感谢阅读,希望对你所有帮助)
来源:blog.csdn.net/mycs2012/article/details/90898128

1、灵魂一问:你的登录接口真的安全吗?
2、HashMap 中这些设计,绝了~
3、在 IntelliJ IDEA 中这样使用 Git,贼方便了!
4、计算机时间到底是怎么来的?程序员必看的时间知识!
5、这些IDEA的优化设置赶紧安排起来,效率提升杠杠的!
6、21 款 yyds 的 IDEA插件
7、真香!用 IDEA 神器看源码,效率真高!

点分享

点收藏

点点赞

点在看

浏览 21
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报
评论
图片
表情
推荐
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报