kaggle图像分割实战要点与技巧总结

小白学视觉

共 11492字,需浏览 23分钟

 ·

2023-08-17 04:48

点击上方小白学视觉”,选择加"星标"或“置顶

重磅干货,第一时间送达

编者荐语

 

作者参加了39个Kaggle比赛,总结了非常多的技巧和经验,现在全部分享给大家。

转载自丨新机器视觉


想象一下,如果你能得到所有的tips和tricks,你需要去参加一个Kaggle比赛。我已经超过39个Kaggle比赛,包括:

  • Data Science Bowl 2017 – $1,000,000
  • Intel & MobileODT Cervical Cancer Screening – $100,000
  • 2018 Data Science Bowl – $100,000
  • Airbus Ship Detection Challenge – $60,000
  • Planet: Understanding the Amazon from Space – $60,000
  • APTOS 2019 Blindness Detection – $50,000
  • Human Protein Atlas Image Classification – $37,000
  • SIIM-ACR Pneumothorax Segmentation – $30,000
  • Inclusive Images Challenge – $25,000

现在把这些知识都挖出来给你们!


外部数据


  • 使用 LUng Node Analysis Grand Challenge 数据,因为这个数据集包含了来自放射学的标注细节。
  • 使用 LIDC-IDRI 数据,因为它具有找到了肿瘤的所有放射学的描述。
  • 使用Flickr CC,维基百科通用数据集
  • 使用Human Protein Atlas Dataset
  • 使用IDRiD数据集

数据探索和直觉


  • 使用0.5的阈值对3D分割进行聚类
  • 确认在训练集和测试集的标签分布上有没有不一样的地方


预处理


  • 使用DoG(Difference of Gaussian)方法进行blob检测,使用skimage中的方法。
  • 使用基于patch的输入进行训练,为了减少训练时间。
  • 使用cudf加载数据,不要用Pandas,因为读数据更快。
  • 确保所有的图像具有相同的方向。
  • 在进行直方图均衡化的时候,使用对比度限制。
  • 使用OpenCV进行通用的图像预处理。
  • 使用自动化主动学习,添加手工标注。
  • 将所有的图像缩放成相同的分辨率,可以使用相同的模型来扫描不同的厚度。
  • 将扫描图像归一化为3D的numpy数组。
  • 对单张图像使用暗通道先验方法进行图像去雾。
  • 将所有图像转化成Hounsfield单位(放射学中的概念)。
  • 使用RGBY的匹配系数来找到冗余的图像。
  • 开发一个采样器,让标签更加的均衡。
  • 对测试图像打伪标签来提升分数。
  • 将图像/Mask降采样到320x480。
  • 直方图均衡化(CLAHE)的时候使用kernel size为32×32
  • 将DCM转化为PNG。
  • 当有冗余图像的时候,为每个图像计算md5 hash值。


数据增强


  • 使用 albumentations 进行数据增强。
  • 使用随机90度旋转。
  • 使用水平翻转,上下翻转。
  • 可以尝试较大的几何变换:弹性变换,仿射变换,样条仿射变换,枕形畸变。
  • 使用随机HSV。
  • 使用loss-less增强来进行泛化,防止有用的图像信息出现大的loss。
  • 应用channel shuffling
  • 基于类别的频率进行数据增强。
  • 使用高斯噪声。
  • 对3D图像使用lossless重排来进行数据增强。
  • 0到45度随机旋转。
  • 从0.8到1.2随机缩放。
  • 亮度变换。
  • 随机变化hue和饱和度。
  • 使用D4:https://en.wikipedia.org/wiki/Dihedral_group增强。
  • 在进行直方图均衡化的时候使用对比度限制。
  • 使用AutoAugment:https://arxiv.org/pdf/1805.09501.pdf增强策略。


模型

结构

  • 使用U-net作为基础结构,并调整以适应3D的输入。
  • 使用自动化主动学习并添加人工标注。
  • 使用inception-ResNet v2 architecture结构使用不同的感受野训练特征。
  • 使用Siamese networks进行对抗训练。
  • 使用ResNet50XceptionInception ResNet v2 x 5,最后一层用全连接。
  • 使用global max-pooling layer,无论什么输入尺寸,返回固定长度的输出。
  • 使用stacked dilated convolutions。
  • VoxelNet。
  • 在LinkNet的跳跃连接中将相加替换为拼接和conv1x1。
  • Generalized mean pooling。
  • 使用224x224x3的输入,用Keras NASNetLarge从头训练模型。
  • 使用3D卷积网络。
  • 使用ResNet152作为预训练的特征提取器。
  • 将ResNet的最后的全连接层替换为3个使用dropout的全连接层。
  • 在decoder中使用转置卷积。
  • 使用VGG作为基础结构。
  • 使用C3D网络,使用adjusted receptive fields,在网络的最后使用64 unit bottleneck layer 。
  • 使用带预训练权重的UNet类型的结构在8bit RGB输入图像上提升收敛性和二元分割的性能。
  • 使用LinkNet,因为又快又省内存。
  • MASKRCNN
  • BN-Inception
  • Fast Point R-CNN
  • Seresnext
  • UNet and Deeplabv3
  • Faster RCNN
  • SENet154
  • ResNet152
  • NASNet-A-Large
  • EfficientNetB4
  • ResNet101
  • GAPNet
  • PNASNet-5-Large
  • Densenet121
  • AC-GAN
  • XceptionNet (96), XceptionNet (299), Inception v3 (139), InceptionResNet v2 (299), DenseNet121 (224)
  • AlbuNet (resnet34) from ternausnets
  • SpaceNet
  • Resnet50 from selim_sef SpaceNet 4
  • SCSEUnet (seresnext50) from selim_sef SpaceNet 4
  • A custom Unet and Linknet architecture
  • FPNetResNet50 (5 folds)
  • FPNetResNet101 (5 folds)
  • FPNetResNet101 (7 folds with different seeds)
  • PANetDilatedResNet34 (4 folds)
  • PANetResNet50 (4 folds)
  • EMANetResNet101 (2 folds)
  • RetinaNet
  • Deformable R-FCN
  • Deformable Relation Networks


硬件设置


  • Use of the AWS GPU instance p2.xlarge with a NVIDIA K80 GPU
  • Pascal Titan-X GPU
  • Use of 8 TITAN X GPUs
  • 6 GPUs: 21080Ti + 41080
  • Server with 8×NVIDIA Tesla P40, 256 GB RAM and 28 CPU cores
  • Intel Core i7 5930k, 2×1080, 64 GB of RAM, 2x512GB SSD, 3TB HDD
  • GCP 1x P100, 8x CPU, 15 GB RAM, SSD or 2x P100, 16x CPU, 30 GB RAM
  • NVIDIA Tesla P100 GPU with 16GB of RAM
  • Intel Core i7 5930k, 2×1080, 64 GB of RAM, 2x512GB SSD, 3TB HDD
  • 980Ti GPU, 2600k CPU, and 14GB RAM


损失函数


  • Dice Coefficient ,因为在不均衡数据上工作很好。
  • Weighted boundary loss 目的是减少预测的分割和ground truth之间的距离。
  • MultiLabelSoftMarginLoss 使用one-versus-all损失优化多标签。
  • Balanced cross entropy (BCE) with logit loss 通过系数来分配正负样本的权重。
  • Lovasz 基于sub-modular损失的convex Lovasz扩展来直接优化平均IoU损失。
  • FocalLoss + Lovasz 将Focal loss和Lovasz losses相加得到。
  • Arc margin loss 通过添加margin来最大化人脸类别的可分性。
  • Npairs loss 计算y_true 和 y_pred之间的npairs损失。
  • 将BCE和Dice loss组合起来。
  • LSEP – 一种成对的排序损失,处处平滑因此容易优化。
  • Center loss 同时学习每个类别的特征中心,并对距离特征中心距离太远的样本进行惩罚。
  • Ring Loss 对标准的损失函数进行了增强,如Softmax。
  • Hard triplet loss 训练网络进行特征嵌入,最大化不同类别之间的特征的距离。
  • 1 + BCE – Dice 包含了BCE和DICE损失再加1。
  • Binary cross-entropy –  log(dice) 二元交叉熵减去dice loss的log。
  • BCE, dice和focal 损失的组合。
  • BCE + DICE - Dice损失通过计算平滑的dice系数得到。
  • Focal loss with Gamma 2 标准交叉熵损失的升级。
  • BCE + DICE + Focal – 3种损失相加。
  • Active Contour Loss 加入了面积和尺寸信息,并集成到深度学习模型中。
  • 1024 * BCE(results, masks) + BCE(cls, cls_target)
  • Focal + kappa – Kappa是一种用于多类别分类的损失,这里和Focal loss相加。
  • ArcFaceLoss —  用于人脸识别的Additive Angular Margin Loss。
  • soft Dice trained on positives only – 使用预测概率的Soft Dice。
  • 2.7 * BCE(pred_mask, gt_mask) + 0.9 * DICE(pred_mask, gt_mask) + 0.1 * BCE(pred_empty, gt_empty) 一种自定义损失。
  • nn.SmoothL1Loss()
  • 使用Mean Squared Error objective function,在某些场景下比二元交叉熵损失好。


训练技巧


  • 尝试不同的学习率。
  • 尝试不同的batch size。
  • 使用SGD + 动量 并手工设计学习率策略。
  • 太多的增强会降低准确率。
  • 在图像上进行裁剪做训练,全尺寸图像做预测。
  • 使用Keras的ReduceLROnPlateau()作为学习率策略。
  • 不使用数据增强训练到平台期,然后对一些epochs使用软硬增强。
  • 冻结除了最后一层外的所有层,使用1000张图像进行微调,作为第一步。
  • 使用分类别采样
  • 在调试最后一层的时候使用dropout和增强
  • 使用伪标签来提高分数
  • 使用Adam在plateau的时候衰减学习率
  • 用SGD使用Cyclic学习率策略
  • 如果验证损失持续2个epochs没有降低,将学习率进行衰减
  • 将10个batches里的最差的batch进行重复训练
  • 使用默认的UNET进行训练
  • 对patch进行重叠,这样边缘像素被覆盖两次
  • 超参数调试:训练时候的学习率,非极大值抑制以及推理时候的分数阈值
  • 将低置信度得分的包围框去掉。
  • 训练不同的卷积网络进行模型集成。
  • 在F1score开始下降的时候就停止训练。
  • 使用不同的学习率。
  • 使用层叠的方法用5 folds的方法训练ANN,重复30次。


评估和验证


  • 按类别非均匀的划分训练和测试集
  • 当调试最后一层的时候,使用交叉验证来避免过拟合。
  • 使用10折交叉验证集成来进行分类。
  • 检测的时候使用5-10折交叉验证来集成。


集成方法


  • 使用简单的投票方法进行集成
  • 对于类别很多的模型使用LightGBM,使用原始特征。
  • 对2层模型使用CatBoost
  • 使用 ‘curriculum learning’ 来加速模型训练,这种训练模式下,模型先在简单样本上训练,再在困难样本上训练。
  • 使用ResNet50, InceptionV3, and InceptionResNetV2进行集成。
  • 对物体检测使用集成。
  • Mask RCNNYOLOv3, 和Faster RCNN 进行集成。


后处理


  • 使用test time augmentation ,对一张图像进行随机变换多次测试后对结果进行平均。
  • 对测试的预测概率进行均衡化,而不是使用预测的类别。
  • 对预测结果进行几何平均。
  • 在推理的时候分块重叠,因为UNet对边缘区域的预测不是很好。
  • 进行非极大值抑制和包围框的收缩。
  • 在实例分割中使用分水岭算法后处理来分离物体。
    
下载1:OpenCV-Contrib扩展模块中文版教程
在「小白学视觉」公众号后台回复:扩展模块中文教程即可下载全网第一份OpenCV扩展模块教程中文版,涵盖扩展模块安装、SFM算法、立体视觉、目标跟踪、生物视觉、超分辨率处理等二十多章内容。

下载2:Python视觉实战项目52讲
小白学视觉公众号后台回复:Python视觉实战项目即可下载包括图像分割、口罩检测、车道线检测、车辆计数、添加眼线、车牌识别、字符识别、情绪检测、文本内容提取、面部识别等31个视觉实战项目,助力快速学校计算机视觉。

下载3:OpenCV实战项目20讲
小白学视觉公众号后台回复:OpenCV实战项目20讲即可下载含有20个基于OpenCV实现20个实战项目,实现OpenCV学习进阶。

交流群


欢迎加入公众号读者群一起和同行交流,目前有SLAM、三维视觉、传感器自动驾驶、计算摄影、检测、分割、识别、医学影像、GAN算法竞赛等微信群(以后会逐渐细分),请扫描下面微信号加群,备注:”昵称+学校/公司+研究方向“,例如:”张三 + 上海交大 + 视觉SLAM“。请按照格式备注,否则不予通过。添加成功后会根据研究方向邀请进入相关微信群。请勿在群内发送广告,否则会请出群,谢谢理解~


浏览 206
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报
评论
图片
表情
推荐
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报