【Python基础】使用统计函数绘制简单图形

机器学习初学者

共 2949字,需浏览 6分钟

 ·

2020-09-05 08:06

机器学习算法与自然语言处理出品

@公众号原创专栏作者 冯夏冲

学校 | 哈工大SCIR实验室在读博士生


# -*- coding:utf-8 -*-import matplotlib as mplimport matplotlib.pyplot as pltimport numpy as np%matplotlib inline%config InlineBackend.figure_format = 'svg'# https://blog.csdn.net/minixuezhen/article/details/81516949plt.rcParams['font.sans-serif'] = ['Arial Unicode MS']mpl.rcParams["axes.unicode_minus"]=False

2.1 函数bar 用于绘制柱状图


# some simple datax = [1,2,3,4,5,6,7,8]y = [3,1,4,5,8,9,7,2]
# create barplt.bar(x,y,align='center',color="c",tick_label=["q","a","c","e","r","j","b","p"])
# labelplt.xlabel("箱子编号")plt.ylabel("箱子重量(kg)")
plt.show()

2.2 函数barh 用于绘制条形图


# some simple datax = [1,2,3,4,5,6,7,8]y = [3,1,4,5,8,9,7,2]
# create barplt.barh(x,y,align='center',color="c",tick_label=["q","a","c","e","r","j","b","p"],hatch="/")
# labelplt.xlabel("箱子编号")plt.ylabel("箱子重量(kg)")
plt.show()

2.3 函数hist 用于绘制直方图


直方图与柱状图的区别


# set test scoresboxWeight = np.random.randint(0,10,100)x = boxWeight # 对该数据集进行统计
# plot histogrambins = range(0,11,1) # 设置连续的边界值,即直方图的分布区间[0,1],[1,2]......plt.hist(x, bins=bins, histtype="bar", rwidth=1, alpha=0.6)
# labelplt.xlabel("箱子重量(kg)")plt.ylabel("销售数量(个)")
plt.show()


函数pie 用于绘制饼图


kinds = "简易箱","保温箱","行李箱","密封箱"colors = "#e41a1c", "#377eb8", "#4daf4a", "#984ea3"soldsNums = [0.05,0.45,0.15,0.35]# pie chartplt.pie(soldsNums,labels=kinds,autopct="%3.1f%%", startangle=60, colors=colors)plt.title("不同类型个箱子的销售数量占比")plt.show()


2.5 函数polor 用于绘制极线图


极线图是在极坐标系上绘出的一种图。在极坐标系中,要确定一个点,需要指明这个点距原点的角度和半径。将这些点连在一起,就构成了极线图。


barSlices = 12theta = np.linspace(0.0, 2*np.pi, barSlices, endpoint=False)r = 30*np.random.rand(barSlices)# theta 角度 r 距离原点的距离 mfc点的颜色 ms点的大小plt.polar(theta, r, color="chartreuse", linewidth=2, marker="*",mfc="b",ms=10)plt.show()


2.6 函数scatter 用于绘制气泡图

二维数据借助气泡大小展示三维数据


a = np.random.randn(100)b = np.random.randn(100)# s 散点标记的大小 c 散点标记的颜色 cmap 讲浮点数映射为颜色的映射表plt.scatter(a, b, s=np.power(10*a+20*b,2),c=np.random.rand(100),cmap=mpl.cm.RdYlBu,marker="o")plt.show()


2.7 函数stem 用于绘制棉棒图


x = np.linspace(0.5, 2*np.pi,20)y = np.random.randn(20)
# y棉棒长度 linefmt棉棒样式 markerfmt棉棒末端样式 basefmt基线样式plt.stem(x,y,linefmt="-.",markerfmt="o",basefmt="-", use_line_collection=True)plt.show()


2.8 函数boxplot 用于绘制箱线图


箱线图是一个能够通过5个数字来描述数据的分布的标准方式,这5个数字包括:最小值,第一分位,中位数,第三分位数,最大值,箱线图能够明确的展示离群点的信息。箱子的中间一条线,是数据的中位数,代表了样本数据的平均水平。箱子的上下限,分别是数据的上四分位数和下四分位数。这意味着箱子包含了50%的数据。


x = np.random.randn(1000)plt.boxplot(x)
plt.xticks([1],["随机数生成器alphaRM"])plt.ylabel("随机数值")plt.title("随机数生成器抗干扰能力的稳定性")
plt.grid(axis="y",ls=":",lw=1,color="gray",alpha=0.4)plt.show()


2.9 函数errorbar 用于绘制误差棒图


x= np.linspace(0.1,0.6,6)y = np.exp(x)# yerr y轴方向误差 xerr x轴方向误差plt.errorbar(x, y, fmt="bo:", yerr=0.2, xerr=0.02)plt.xlim(0,0.7)plt.show()



往期精彩回顾





获取一折本站知识星球优惠券,复制链接直接打开:

https://t.zsxq.com/662nyZF

本站qq群1003271085。

加入微信群请扫码进群(如果是博士或者准备读博士请说明):




浏览 51
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报
评论
图片
表情
推荐
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报