提升开发效率N倍的20+命令行神器!
共 20757字,需浏览 42分钟
·
2021-03-14 14:04
背景
本文主要来源于在之前公司的小组内部的一个小分享,整理成一篇文章po出来。题目叫 “Shell 助力开发效率提升”,更切题的应该是叫“命令行”提升开发效率,这里并没有讲到 Shell 编程,而是主要介绍 Linux 或者 Mac 下常用的一些基本工具命令来帮助处理一些日常事务。
通过本文的介绍,你应该对相关命令有一个初步的了解,知道比如用什么命令可以完成怎样的操作, 至于具体的参数,不需要刻意地背诵,等到需要用到的时候,再去 cmd --help
或者 man cmd
,用得多了,常用的命令也就自然记住了。
本文首先介绍了 Linux/Mac 下一些常用的命令行工具,然后用具体的示例阐述了常用的命令用法,最后通过一两个案例来说明这些工具的强大之处:
比如给定一个 nginx 日志文件,能够找出 HTTP 404 请求最多的 top 10 是什么? 比如能找到请求耗时最多的 top 10 是什么? 再比如能够简单的得到每小时的"PV"是多少? 再比如拿到一篇文章, 能否简单统计一下这篇文章单次词频最高的10个词语是什么? 需要批量改某个文件夹下的文件名,批量将文件夹下的图片压缩成固定大小的,等等。
Mac 环境
zsh on-my-zsh plugin git autojump osx(man-preview/quick-look/pfd(print Finder director)/cdf(cd Finder)) 常用快捷键( bindkey
)演示: 高亮/git/智能补全/跳转(j, d)...
这里给大家展示一个小 Demo,之前在视频号(程序猿石头,欢迎关注)中分享的一个小视频,演示了如何在目录之间快速跳转。
关于 Mac 程序猿提高效率的相关技巧,更多的可以参考以下三篇文章:
Shell 基础命令
which/whereis, 常用
whatis
,man
,--help
➜ .oh-my-zsh git:(master)$ whereis ls
/bin/ls
➜ .oh-my-zsh git:(master)$ which ls
ls: aliased to ls -G基本文件目录操作
rm, mkdir, mv, cp, cd, ls, ln, file, stat, wc(-l/w/c), head, more, tail, cat...
利器 管道:
|
Shell 文本处理
这里就是通过案例讲了一下12个命令的大致用法和参数,可以通过点击右边的目录(我博客有目录,公众号上木有)直达你想要了解的命令。
find, grep, xargs, cut, paste, comm
join, sort, uniq, tr, sed, awk
find
常用参数
文件名 -name
, 文件类型-type
, 查找最大深度-maxdepth
时间过滤(create/access/modify) -[cam]time
执行动作 -exec
示例
find ./ -name "*.json"
find . -maxdepth 7 -name "*.json" -type f
find . -name "*.log.gz" -ctime +7 -size +1M -delete (atime/ctime/mtime)
find . -name "*.scala" -atime -7 -exec du -h {} \;
grep
常用参数
-v(invert-match), -c(count), -n(line-number), -i(ignore-case), -l, -L, -R(-r, --recursive), -e 示例
grep 'partner' ./*.scala -l
grep -e 'World' -e 'first' -i -R ./ (-e: or)相关命令:
grep -z / zgrep / zcat xx | grep
xargs
常用参数
-n(每行列数), -I(变量替换) -d(分隔符), Mac 不支持,注意与GNU版本的区别 示例
find . -type f -name "*.jpg" | xargs -n1 -I {} du -sh {}
cut
常用参数
-b(字节) -c(字符) -f(第几列),-d(分隔符),f 范围: n, n-, -m, n-m
示例
echo "helloworldhellp" | cut -c1-10
cut -d, -f2-8 csu.db.export.csv
paste
常用参数
-d 分隔符 -s 列转行 示例
➜ Documents$ cat file1
1 11
2 22
3 33
4 44
➜ Documents$ cat file2
one 1
two 2
three 3
one1 4
➜ Documents$ paste -d, file1 file2
1 11, one 1
2 22, two 2
3 33, three 3
4 44, one1 4
➜ Documents$ paste -s -d: file1 file2
a 11:b bb:3 33:4 44
one 1:two 2:three 3:one1 4
join
类似sql中的 ...inner join ...on ...
, -t
分隔符,默认为空格或tab
➜ Documents$ cat j1
1 11
2 22
3 33
4 44
5 55
➜ Documents$ cat j2
one 1 0
one 2 1
two 4 2
three 5 3
one1 5 4
➜ Documents$ join -1 1 -2 3 j1 j2
1 11 one 2
2 22 two 4
3 33 three 5
4 44 one1 5
comm
常用参数
用法 comm [-123i] file1 file2
字典序列, 3列: 只在file1/file2/both -
去掉某列,i
忽略大小写示例
➜ Documents$ seq 1 5 >file11
➜ Documents$ seq 2 6 >file22
➜ Documents$ cat file11
1
2
3
4
5
➜ Documents$ cat file22
2
3
4
5
6
➜ Documents$ comm file11 file22
1
2
3
4
5
6
➜ Documents$ comm -1 file11 file22
2
3
4
5
6
➜ Documents$ comm -2 file11 file22
1
2
3
4
5
➜ Documents$ comm -23 file11 file22
1
相关命令 diff(类似git diff)
sort
常用参数
-d, --dictionary-order -n, --numeric-sort -r, --reverse -b, --ignore-leading-blanks -k, --key 示例
➜ Documents$ cat file2
one 1
two 2
three 3
one1 4
➜ Documents$ sort file2
one 1
one1 4
three 3
two 2
➜ Documents$ sort -b -k2 -r file2
one1 4
three 3
two 2
one 1
uniq
常用参数
-c 重复次数 -d 重复的 -u 没重复的 -f 忽略前几列 示例
➜ Documents$ cat file4
11
22
33
11
11
➜ Documents$ sort file4 | uniq -c
3 11
1 22
1 33
➜ Documents$ sort file4 | uniq -d
11
➜ Documents$ sort file4 | uniq -u
22
33
➜ Documents$ cat file3
one 1
two 1
three 3
one1 4
➜ Documents$ uniq -c -f 1 file3
2 one 1
1 three 3
1 one1 4
注意:uniq
比较相邻的是否重复,一般与sort
联用
tr
常用参数
-c 补集 -d 删除 -s 压缩相邻重复的 示例
➜ Documents$ echo '1111234444533hello' | tr '[1-3]' '[a-c]'
aaaabc44445cchello
➜ Documents$ echo '1111234444533hello' | tr -d '[1-3]'
44445hello
➜ Documents$ echo '1111234444533hello' | tr -dc '[1-3]'
11112333
➜ Documents$ echo '1111234444533hello' | tr -s '[0-9]'
123453hello
➜ Documents$ echo 'helloworld' | tr '[:lower:]' '[:upper:]'
HELLOWORLD
sed
常用参数
-d 删除 -s 替换, g 全局 -e 多个命令叠加 -i 修改原文件(Mac下加参数 "",备份) 示例
➜ Documents$ cat file2
one 1
two 2
three 3
one1 4
➜ Documents$ sed "2,3d" file2
one 1
one1 4
➜ Documents$ sed '/one/d' file2
two 2
three 3
➜ Documents$ sed 's/one/111/g' file2
111 1
two 2
three 3
1111 4
#将one替换成111 并将含有two的行删除
➜ Documents$ sed -e 's/one/111/g' -e '/two/d' file2
111 1
three 3
1111 4
# ()标记(转义), \1 引用
➜ Documents$ sed 's/\([0-9]\)/\1.html/g' file2
one 1.html
two 2.html
three 3.html
one1.html 4.html
# 与上面一样 & 标记匹配的字符
➜ Documents$ sed 's/[0-9]/&.html/g' file2
one 1.html
two 2.html
three 3.html
one1.html 4.html
➜ Documents$ cat mobile.csv
"13090246026"
"18020278026"
"18520261021"
"13110221022"
➜ Documents$ sed 's/\([0-9]\{3\}\)[0-9]\{4\}/\1xxxx/g' mobile.csv
"130xxxx6026"
"180xxxx8026"
"185xxxx1021"
"131xxxx1022"
awk
基本参数和语法
NR 行号, NF 列数量 $1
第1列,$2, $3
...-F fs fs分隔符,字符串或正则 语法: awk 'BEGIN{ commands } pattern{ commands } END{ commands }'
, 流程如下:执行begin 对输入每一行执行 pattern{ commands }
, pattern 可以是 正则/reg exp/
, 关系运算等处理完毕, 执行 end 示例
➜ Documents$ cat file5
11 11 aa cc
22 22 bb
33 33 d
11 11
11 11
#行号, 列数量, 第3列
➜ Documents$ awk '{print NR"("NF"):", $3}' file5
1(4): aa
2(3): bb
3(3): d
4(2):
5(2):
#字符串分割, 打印1,2列
➜ Documents$ awk -F"xxxx" '{print $1, $2}' mobile.csv
"130 6026"
"180 8026"
"185 1021"
"131 1022"
#添加表达式
➜ Documents$ awk '$1>=22 {print NR":", $3}' file5
2: bb
3: d
#累加1到36,奇数,偶数
➜ Documents$ seq 36 | awk 'BEGIN{sum=0; print "question:"} {print $1" +"; sum+=$1} END{print "="; print sum}' | xargs | sed 's/+ =/=/'
question: 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12 + 13 + 14 + 15 + 16 + 17 + 18 + 19 + 20 + 21 + 22 + 23 + 24 + 25 + 26 + 27 + 28 + 29 + 30 + 31 + 32 + 33 + 34 + 35 + 36 = 666
➜ Documents$ seq 36 | awk 'BEGIN{sum=0; print "question:"} $1 % 2 ==1 {print $1" +"; sum+=$1} END{print "="; print sum}' | xargs | sed 's/+ =/=/'
question: 1 + 3 + 5 + 7 + 9 + 11 + 13 + 15 + 17 + 19 + 21 + 23 + 25 + 27 + 29 + 31 + 33 + 35 = 324
➜ Documents$ seq 36 | awk 'BEGIN{sum=0; print "question:"} $1 % 2 !=1 {print $1" +"; sum+=$1} END{print "="; print sum}' | xargs | sed 's/+ =/=/'
question: 2 + 4 + 6 + 8 + 10 + 12 + 14 + 16 + 18 + 20 + 22 + 24 + 26 + 28 + 30 + 32 + 34 + 36 = 342
其他高级语法:for, while
等, 各种函数等,本身awk
是一个强大的语言,可以掌握一些基本的用法。
实际应用
日志统计分析
例如拿到一个nginx日志文件,可以做很多事情,比如看哪些请求是耗时最久的进而进行优化,比如看每小时的"PV"数 等等。
➜ Documents$ head -n5 std.nginx.log
106.38.187.225 - - [20/Feb/2017:03:31:01 +0800] www.tanglei.name "GET /baike/208344.html HTTP/1.0" 301 486 "-" "Mozilla/5.0 (compatible; MSIE 7.0; Windows NT 5.1; .NET CLR 1.1.4322) 360JK yunjiankong 975382" "106.38.187.225, 106.38.187.225" - 0.000
106.38.187.225 - - [20/Feb/2017:03:31:02 +0800] www.tanglei.name "GET /baike/208344.html HTTP/1.0" 301 486 "-" "Mozilla/5.0 (compatible; MSIE 7.0; Windows NT 5.1; .NET CLR 1.1.4322) 360JK yunjiankong 975382" "106.38.187.225, 106.38.187.225" - 0.000
10.130.64.143 - - [20/Feb/2017:03:31:02 +0800] stdbaike.bdp.cc "POST /baike/wp-cron.php?doing_wp_cron=1487532662.2058920860290527343750 HTTP/1.1" 200 182 "-" "WordPress/4.5.6; http://www.tanglei.name/baike" "10.130.64.143" 0.205 0.205
10.130.64.143 - - [20/Feb/2017:03:31:02 +0800] www.tanglei.name "GET /external/api/login-status HTTP/1.0" 200 478 "-" "-" "10.130.64.143" 0.003 0.004
10.130.64.143 - - [20/Feb/2017:03:31:02 +0800] www.tanglei.name "GET /content_util/authorcontents?count=5&offset=0&israndom=1&author=9 HTTP/1.0" 200 11972 "-" "-" "10.130.64.143" 0.013 0.013
上面是nginx的一个案例, 例如希望找到top 10 请求的path:
head -n 10000 std.nginx.log | awk '{print $8 ", " $10}' | grep ',404' | sort | uniq -c | sort -nr -k1 | head -n 10
#or
head -n 10000 std.nginx.log | awk '$10==404 {print $8}' |sort | uniq -c | sort -nr -k1 | head -n 10
当然,你可能一次不会直接处理成功,一般会先少拿一部分数据进行处理看逻辑是否正常, 或者你可以缓存一些中间结果.
cat std.nginx.log | awk '{print $8 "," $10}' | grep ',404' >404.log
sort 404.log | uniq -c | sort -nr -k1 | head -n 10
再比如每小时请求数量,请求耗时等等
➜ Documents$ head -n 100000 std.nginx.log | awk -F: '{print $1 $2}' | cut -f3 -d/ | uniq -c
8237 201703
15051 201704
16083 201705
18561 201706
22723 201707
19345 201708
其他实际案例 ip block
案例: db数据订正
背景: 因为某服务bug,导致插入到db的图片路径不对,需要将形如(安全需要已经将敏感数据替换) https://www.tanglei.name/upload/photos/129630//internal-public/shangtongdai/2017-02-19-abcdefg-eb85-4c24-883e-hijklmn.jpg
替换成 http://www.tanglei.me/internal-public/shangtongdai/2017-02-19-abcdefg-eb85-4c24-883e-hijklmn.jpg
,因为mysql等db貌似不支持直接正则的替换,所以不能够很方便的进行写sql进行替换(就算支持,直接改也有风险的,还是先备份再修改留个“后悔药”)。
当然将数据导出,然后写 python 等脚本处理也是一种解决方案,但如果用上面的命令行处理,只需要几十秒即可完成。
步骤:
准备数据
select id, photo_url_1, photo_url_2, photo_url_3 from somedb.sometable where
photo_url_1 like 'https://www.tanglei.name/upload/photos/%//internal-public/%' or
photo_url_2 like 'https://www.tanglei.name/upload/photos/%//internal-public/%' or
photo_url_3 like 'https://www.tanglei.name/upload/photos/%//internal-public/%';替换原文件 一般在用sed替换的时候,先测试一下是否正常替换。
#测试是否OK
head -n 5 customers.csv | sed 's|https://www.tanglei.name/upload/photos/[0-9]\{1,\}/|http://www.tanglei.me|g'
# 直接替换原文件, 可以sed -i ".bak" 替换时保留原始备份文件
sed -i "" 's|https://www.tanglei.name/upload/photos/[0-9]\{1,\}/|http://www.tanglei.me|g' customers.csv拼接sql, 然后执行
awk -F, '{print "update sometable set photo_url_1 = " $2, ", photo_url_2 = " $3, ", photo_url_3 = " $4, " where id = " $1 ";" }' customers.csv > customer.sql
#然后执行sql 即可
其他
play framework session
统计文章单词频率: 下面案例统计了川普就职演讲原文中词频最高的10个词。
➜ Documents$ head -n3 chuanpu.txt
Chief Justice Roberts, President Carter, President Clinton, President Bush, President Obama, fellow Americans and people of the world, thank you.
We, the citizens of America, are now joined in a great national effort to rebuild our country and restore its promise for all of our people. Together we will determine the course of America and the world for many, many years to come.
➜ Documents$ cat chuanpu.txt | tr -dc 'a-zA-Z ' | xargs -n 1 | sort | uniq -c | sort -nr -k1 | head -n 20
65 the
63 and
48 of
46 our
42 will
37 to
21 We
20 is
18 we
17 America
15 a
14 all
13 in
13 for
13 be
13 are
10 your
10 not
10 And
10 American随机数:比如常常新注册一个网站,随机生成一个密码之类的。
➜ Documents$ cat /dev/urandom | LC_CTYPE=C tr -dc 'a-zA-Z0-9' | fold -w 32 | head -n 5
cpBnvC0niwTybSSJhUUiZwIz6ykJxBvu
VDP56NlHnugAt2yDySAB9HU2Nd0LlYCW
0WEDzpjPop32T5STvR6K6SfZMyT6KvAI
a9xBwBat7tJVaad279fOPdA9fEuDEqUd
hTLrOiTH5FNP2nU3uflsjPUXJmfleI5c
➜ Documents$ cat /dev/urandom | head -c32 | base64
WoCqUye9mSXI/WhHODHDjzLaSb09xrOtbrJagG7Kfqc=图片处理压缩,可批量改图片大小等等
sips
➜ linux-shell-more-effiency$ sips -g all which-whereis.png
/Users/tanglei/Documents/linux-shell-more-effiency/which-whereis.png
pixelWidth: 280
pixelHeight: 81
typeIdentifier: public.png
format: png
formatOptions: default
dpiWidth: 72.000
dpiHeight: 72.000
samplesPerPixel: 4
bitsPerSample: 8
hasAlpha: yes
space: RGB
profile: DELL U2412M
➜ linux-shell-more-effiency$ sips -Z 250 which-whereis.png
/Users/tanglei/Documents/linux-shell-more-effiency/which-whereis.png
/Users/tanglei/Documents/linux-shell-more-effiency/which-whereis.png
➜ linux-shell-more-effiency$ sips -g all which-whereis.png
/Users/tanglei/Documents/linux-shell-more-effiency/which-whereis.png
pixelWidth: 250
pixelHeight: 72
typeIdentifier: public.png
format: png
formatOptions: default
dpiWidth: 72.000
dpiHeight: 72.000
samplesPerPixel: 4
bitsPerSample: 8
hasAlpha: yes
space: RGB
profile: DELL U2412M
➜ linux-shell-more-effiency$ sips -z 100 30 which-whereis.png
/Users/tanglei/Documents/linux-shell-more-effiency/which-whereis.png
/Users/tanglei/Documents/linux-shell-more-effiency/which-whereis.png
➜ linux-shell-more-effiency$ sips -g pixelWidth -g pixelHeight which-whereis.png
/Users/tanglei/Documents/linux-shell-more-effiency/which-whereis.png
pixelWidth: 30
pixelHeight: 100命令行处理 JSON 的神器:随着 JSON 通用性,常常需要处理 JSON 数据,这里推荐这个命令行 JSON 处理神器 jq is a lightweight and flexible command-line JSON processor[1]
推荐以下参考材料:
老方式: 需要启play环境,慢。新方式直接命令行解决。
sbt "project site" consoleQuick
import play.api.libs._
val sec = "secret...secret"
var uid = "10086"
Crypto.sign(s"uid=$uid", sec.getBytes("UTF-8")) + s"-uid=$uid"
➜ Documents$ ~/stdcookie.sh 97522
918xxxxdf64abcfcxxxxc465xx7554dxxxx21e-uid=97522
➜ Documents$ cat ~/stdcookie.sh
#!/bin/bash ## cannot remove this line
uid=$1
hash=`echo -n "uid=$uid" | openssl dgst -sha1 -hmac "secret...secret"`
echo "$hash-uid=$uid"
[1] JSON processor: https://stedolan.github.io/jq/
[2] Linux工具快速教程: http://linuxtools-rst.readthedocs.io/zh_CN/latest/index.html
[3] Linux命令大全: http://man.linuxde.net/
[4] Advanced Bash-Scripting Guide: http://tldp.org/LDP/abs/html/
[5] UNIX环境高级编程: https://book.douban.com/subject/25900403