利用OpenCV实现基于深度学习的超分辨率处理

小白学视觉

共 3238字,需浏览 7分钟

 ·

2021-12-29 09:00



点击上方小白学视觉”,选择加"星标"或“置顶

重磅干货,第一时间送达

OpenCV是一个非常强大的计算机视觉处理的工具库。很多小伙伴在入门图像处理时都需要学习OpenCV的使用。但是随着计算机视觉技术的发展,越来越多的算法涌现出来,人们逐渐觉得OpenCV比较落后而放弃了使用OpenCV。


但是,实际上OpenCV时一个与时俱进的开源代码库。正在逐渐的吸收和接纳最新的算法。本文我们来介绍如何使用OpenCV实现基于深度学习的图像超分辨率(SR)。使用OpenCV的好处就是,我们不需要知道任何图像超分辨率的相关知识,就可以使用这个代码,并实现图像超分辨率。


具体操作步骤


1. 安装OpenCV contrib模块


OpenCV中的超分辨率功能被集成在了contrib模块中,因此我们首先需要安装OpenCV的扩展模块。安装过程可以参考【从零学习OpenCV 4】opencv_contrib扩展模块的安装。超分辨率被集成在dnn_superres模块中,如果小伙伴们电脑空间有限,可以只编译这一个模块。


近期有小伙伴反馈自己安装扩展模块失败,为了解决这个问题,小白近期在筹划搭建一个各个版本opencv-contrib编译完成的数据库。各位小伙伴随时关注我们公众号的动态。


2. 下载训练的模型


由于某些模型比较大,因此OpenCV代码库中没有包含他们,因此我们在使用的时候需要单独的下载经过训练的模型。目前,仅支持4种不同的超分辨率模型,他们可以实现2倍、3倍、4倍甚至8倍的图像方法。这些模型具体如下:


EDSR:这个是表现最好的模型。但是这个模型也是最大的,所以运行速度会比较慢。

ESPCN:这个模型具有速度快,效果好的特点,并且模型较小。它可以进行对视频进行实时处理(取决于图像大小)。

FSRCNN:这也是具有快速准确推断功能的小型模型。也可以进行实时视频升频。

LapSRN:这是一个中等大小的模型,它的特点是最大可以将图像放大8倍。

公众号后台回复“SR模型”获取下载这四个模型的方式。

3. 通过程序实现超分辨率

我们首先给出C++完整程序,之后对程序中每一行代码进行介绍。完整程序如下:
#include #include #include 
using namespace std;using namespace cv;using namespace dnn;using namespace dnn_superres;
int main(int argc, char *argv[]){ //Create the module's object DnnSuperResImpl sr;
//Set the image you would like to upscale string img_path = "image.png"; Mat img = cv::imread(img_path);
//Read the desired model string path = "FSRCNN_x2.pb"; sr.readModel(path);
//Set the desired model and scale to get correct pre- and post-processing sr.setModel("fsrcnn", 2);
//Upscale Mat img_new; sr.upsample(img, img_new); cv::imwrite( "upscaled.png", img_new);
return 0;}

首先加载我们选择的模型,并将其输入到神经网络的变量中。需要注意的是模型文件所存在的地址,本文放置在了程序的根目录中。
//Read the desired modelstring path = "FSRCNN_x2.pb";sr.readModel(path);

之后设置模型的种类和放大系数。本文选择的模型是fsrcnn,放大系数选择的2。
//Set the desired model and scale to get correct pre- and post-processingsr.setModel("fsrcnn", 2);


可以选择的模型有“ edsr”,“ fsrcnn”,“ lapsrn”,“ espcn”,这几个参数就是我们刚才介绍的4中模型。需要注意的是,每个模型能够放大的倍数是不一致的。前三种模型能够放大2、3、4倍,最后一个模型能够放大2、3、4、8倍。

之后通过upsample()函数进行超分辨率放大。
//UpscaleMat img_new;sr.upsample(img, img_new);cv::imwrite( "upscaled.png", img_new);

上述是C++代码,接下来给出Python实现超分辨率的代码
import cv2from cv2 import dnn_superres
# Create an SR objectsr = dnn_superres.DnnSuperResImpl_create()
# Read imageimage = cv2.imread('./input.png')
# Read the desired modelpath = "EDSR_x3.pb"sr.readModel(path)
# Set the desired model and scale to get correct pre- and post-processingsr.setModel("edsr", 3)
# Upscale the imageresult = sr.upsample(image)
# Save the imagecv2.imwrite("./upscaled.png", result)

不同于C++代码,在使用python代码时,需要先通过如下代码进行声明。
# Create an SR objectsr = dnn_superres.DnnSuperResImpl_create()

4. 处理结果

输入图像

双线性插值放大3倍

FSRCNN放大3倍

ESDR放大3倍


下载1:OpenCV-Contrib扩展模块中文版教程
在「小白学视觉」公众号后台回复:扩展模块中文教程即可下载全网第一份OpenCV扩展模块教程中文版,涵盖扩展模块安装、SFM算法、立体视觉、目标跟踪、生物视觉、超分辨率处理等二十多章内容。

下载2:Python视觉实战项目52讲
小白学视觉公众号后台回复:Python视觉实战项目即可下载包括图像分割、口罩检测、车道线检测、车辆计数、添加眼线、车牌识别、字符识别、情绪检测、文本内容提取、面部识别等31个视觉实战项目,助力快速学校计算机视觉。

下载3:OpenCV实战项目20讲
小白学视觉公众号后台回复:OpenCV实战项目20讲即可下载含有20个基于OpenCV实现20个实战项目,实现OpenCV学习进阶。

交流群


欢迎加入公众号读者群一起和同行交流,目前有SLAM、三维视觉、传感器自动驾驶、计算摄影、检测、分割、识别、医学影像、GAN算法竞赛等微信群(以后会逐渐细分),请扫描下面微信号加群,备注:”昵称+学校/公司+研究方向“,例如:”张三 + 上海交大 + 视觉SLAM“。请按照格式备注,否则不予通过。添加成功后会根据研究方向邀请进入相关微信群。请勿在群内发送广告,否则会请出群,谢谢理解~


浏览 35
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报
评论
图片
表情
推荐
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报