AI大合集:优秀组织、视频、博客书籍、GitHub等等

共 7604字,需浏览 16分钟

 ·

2020-10-20 09:06

点击上方AI算法与图像处理”,选择加"星标"或“置顶”

重磅干货,第一时间送达

来源:AIRX社区


本部分资源内容主要是国外的一些AI学习与开发内容,包括AI组织,视频课程,博客,书籍,YouTube频道,Quora,Github,书籍推荐,会议,研究链接,教程等。



组织机构



有一些著名的组织致力于推动AI研究与开发。


1、OpenAI

https://openai.com/


2、DeepMind


https://deepmind.com/


3、Google Research


https://research.googleblog.com/


4、AWS AI

https://aws.amazon.com/blogs/ai/


5、微软研究院

https://www.microsoft.com/en-us/research/


6、Facebook AI研究


https://research.fb.com/category/facebook-ai-research-fair/


7、百度研究

http://research.baidu.com/


8、IntelAI

https://software.intel.com/en-us/ai


9、AI²

http://allenai.org/


10、AI


https://www.partnershiponai.org/



视频课程



现在网上有大量的视频课程和教程,其中很多都是免费的,也有一些不错的付费选择,但在本文中,我只列举一些免费内容。


1、Coursera-机器学习

https://www.coursera.org/learn/machine-learning#syllabus


2、Coursera —机器学习的神经网络

https://www.coursera.org/learn/neural-networks


3、Udacity —机器学习入门

https://classroom.udacity.com/courses/ud120


4、Udacity —机器学习

https://www.udacity.com/course/machine-learning--ud262


5、Udacity —深度学习

https://www.udacity.com/course/deep-learning--ud730


6、机器学习

https://www.youtube.com/playlist?list=PLD0F06AA0D2E8FFBA


7、面向程序员的实用深度学习

http://course.fast.ai/start.html


8、Stanford—用于视觉识别的卷积神经网络

https://www.youtube.com/watch?v=g-PvXUjD6qg&list=PLlJy-eBtNFt6EuMxFYRiNRS07MCWN5UIA


9、Stanford—具有深度学习的自然语言处理

https://www.youtube.com/playlist?list=PL3FW7Lu3i5Jsnh1rnUwq_TcylNr7EkRe6


10、牛津大学深层自然语言处理课程

https://github.com/oxford-cs-deepnlp-2017/lectures


11、Python实用机器学习教程

https://www.youtube.com/watch?list=PLQVvvaa0QuDfKTOs3Keq_kaG2P55YRn5v&v=OGxgnH8y2NM




Youtube精选



下面提供了一些YouTube频道或用户的链接,这些频道或用户具有与AI或机器学习相关的常规内容。


1、sentdex (225K subscribers, 21M views)

https://www.youtube.com/user/sentdex


2、Siraj Raval (140K subscribers, 5M views)

https://www.youtube.com/channel/UCWN3xxRkmTPmbKwht9FuE5A


3、Two Minute Papers (60K subscribers, 3.3M views)

https://www.youtube.com/user/keeroyz


4、DeepLearning.TV (42K subscribers, 1.7M views)

https://www.youtube.com/channel/UC9OeZkIwhzfv-_Cb7fCikLQ


5、Data School (37K subscribers, 1.8M views)

https://www.youtube.com/user/dataschool


6、Machine Learning Recipes with Josh Gordon (324K views)

https://www.youtube.com/playlist?list=PLOU2XLYxmsIIuiBfYad6rFYQU_jL2ryal


7、Artificial Intelligence — Topic (10K subscribers)

https://www.youtube.com/channel/UC9pXDvrYYsHuDkauM2fLllQ


8、Allen Institute for Artificial Intelligence (AI2) (1.6K subscribers, 69K views)

https://www.youtube.com/channel/UCEqgmyWChwvt6MFGGlmUQCQ


9、Machine Learning at Berkeley (634 subscribers, 48K views)

https://www.youtube.com/channel/UCXweTmAk9K-Uo9R6SmfGtjg


10、Understanding Machine Learning — Shai Ben-David (973 subscribers, 43K views)

https://www.youtube.com/channel/UCR4_akQ1HYMUcDszPQ6jh8Q


11、Machine Learning TV (455 subscribers, 11K views)

https://www.youtube.com/channel/UChIaUcs3tho6XhyU6K6KMrw



博客专栏



下面我主要列了些那些持续发布与人工智能相关主题的原创博客。


1、Andrej Karpathy

http://karpathy.github.io/


2、i am trask

http://iamtrask.github.io/


3、Christopher Olah

http://colah.github.io/


4、Top Bots

http://www.topbots.com/


5、WildML

http://www.wildml.com/


6、Distill

http://distill.pub/


7、Machine Learning Mastery

http://machinelearningmastery.com/blog/


8、FastML

http://fastml.com/


9、Adventures in NI

https://joanna-bryson.blogspot.de/


10、Sebastian Ruder

http://sebastianruder.com/


11、Unsupervised Methods

http://unsupervisedmethods.com/


12、Explosion

https://explosion.ai/blog/


13、Tim Dettmers 

http://timdettmers.com/


14、When trees fall… 

http://blog.wtf.sg/


15、ML@B

https://ml.berkeley.edu/blog/



Github



AI社区的好处之一是,大多数新项目都是开源的,可以在Github上使用。在Github上也有很多教育资源。


1、Machine Learning


https://github.com/search?o=desc&q=topic%3Amachine-learning+&s=stars&type=Repositories&utf8=%E2%9C%93


2、Deep Learning


https://github.com/search?q=topic%3Adeep-learning&type=Repositories


3、Tensorflow


https://github.com/search?q=topic%3Atensorflow&type=Repositories


4、Neural Network


https://github.com/search?q=topic%3Aneural-network&type=Repositories


5、NLP


https://github.com/search?utf8=%E2%9C%93&q=topic%3Anlp&type=Repositories



书籍推荐



市面上有很多关于机器学习、深度学习和NLP的书籍。在这一节中,我将只关注那些你可以直接从网上获取或下载的免费书籍。


机器学习部分


1、Understanding Machine Learning From Theory to Algorithms

http://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning/understanding-machine-learning-theory-algorithms.pdf


2、Machine Learning Yearning

http://www.mlyearning.org/


3、A Course in Machine Learning

http://ciml.info/


4、Machine Learning

https://www.intechopen.com/books/machine_learning


5、Neural Networks and Deep Learning

http://neuralnetworksanddeeplearning.com/


6、Deep Learning Book

http://www.deeplearningbook.org/


7、Reinforcement Learning: An Introduction

http://incompleteideas.net/sutton/book/the-book-2nd.html


8、Reinforcement Learning

https://www.intechopen.com/books/reinforcement_learning


NLP部分


1、Speech and Language Processing


https://web.stanford.edu/~jurafsky/slp3/


2、Natural Language Processing with Python

http://www.nltk.org/book/


3、An Introduction to Information Retrieval

https://nlp.stanford.edu/IR-book/html/htmledition/irbook.html


数学基础部分


1、Introduction to Statistical Thought


http://people.math.umass.edu/~lavine/Book/book.pdf


2、Introduction to Bayesian Statistics


https://www.stat.auckland.ac.nz/~brewer/stats331.pdf


3、Introduction to Probability


https://www.dartmouth.edu/~chance/teaching_aids/books_articles/probability_book/amsbook.mac.pdf


4、Think Stats: Probability and Statistics for Python programmers


http://greenteapress.com/wp/think-stats-2e/


5、The Probability and Statistics Cookbook


http://statistics.zone/


6、Linear Algebra


http://joshua.smcvt.edu/linearalgebra/book.pdf


7、Linear Algebra Done Wrong


http://www.math.brown.edu/~treil/papers/LADW/book.pdf


8、Linear Algebra, Theory And Applications

https://math.byu.edu/~klkuttle/Linearalgebra.pdf


9、Mathematics for Computer Science

https://courses.csail.mit.edu/6.042/spring17/mcs.pdf


10、Calculus

https://ocw.mit.edu/ans7870/resources/Strang/Edited/Calculus/Calculus.pdf


11、Calculus I for Computer Science and Statistics Students

http://www.math.lmu.de/~philip/publications/lectureNotes/calc1_forInfAndStatStudents.pdf


Quora



Quora已经成为人工智能和机器学习的重要资源。许多顶尖的研究人员在网站上回答问题。下面我列出了一些主要的人工智能相关主题:


1、Computer-Science

https://www.quora.com/topic/Computer-Science


2、Machine-Learning


https://www.quora.com/topic/Machine-Learning


3、Artificial-Intelligence


https://www.quora.com/topic/Artificial-Intelligence


4、Deep-Learning


https://www.quora.com/topic/Deep-Learning


5、Natural-Language-Processing


https://www.quora.com/topic/Natural-Language-Processing


6、Classification-machine-learning


https://www.quora.com/topic/Classification-machine-learning


7、Artificial-General-Intelligence


https://www.quora.com/topic/Artificial-General-Intelligence


8、Convolutional-Neural-Networks-CNNs


https://www.quora.com/topic/Convolutional-Neural-Networks-CNNs


9、Computational-Linguistics


https://www.quora.com/topic/Computational-Linguistics


10、Recurrent-Neural-Networks


https://www.quora.com/topic/Recurrent-Neural-Networks



会议



不出所料,随着人工智能的普及,与人工智能相关的会议数量也在增加。


学术


1、NIPS

https://nips.cc/


2、ICML

https://2017.icml.cc/


3、KDD

http://www.kdd.org/


4、ICLR

http://www.iclr.cc/


5、ACL

http://acl2017.org/


6、EMNLP

http://emnlp2017.net/


7、CVPR

http://cvpr2017.thecvf.com/


8、ICCF

http://iccv2017.thecvf.com/


专业


1、O’Reilly Artificial Intelligence Conference

https://conferences.oreilly.com/artificial-intelligence/


2、Machine Learning Conference

http://mlconf.com/


3、AI Expo

https://www.ai-expo.net/


4、AI Summit

https://theaisummit.com/


5、AI Conference

https://aiconference.ticketleap.com/helloworld/


AIRX团队整理:

https://medium.com/machine-learning-in-practice/my-curated-list-of-ai-and-machine-learning-resources-from-around-the-web-9a97823b8524


持续更新~~


下载1:OpenCV黑魔法


AI算法与图像处理」公众号后台回复:OpenCV黑魔法,即可下载小编精心编写整理的计算机视觉趣味实战教程



下载2 CVPR2020

AI算法与图像处公众号后台回复:CVPR2020即可下载1467篇CVPR 2020论文
个人微信(如果没有备注不拉群!
请注明:地区+学校/企业+研究方向+昵称


觉得有趣就点亮在看吧




浏览 68
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报
评论
图片
表情
推荐
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报