2020年,MIT出版社出版了赫伯特·罗伊特布拉特(Herbert L. Roitblat)一本书,题为《Algorithms Are Not Enough:Creating General Artificial Intelligence(算法是不够的:创造通用的人工智能)》。这本书讨论了为什么在探索人工通用智能时需要一种新的方法(参考资料[1])。书中提到,自从人工智能诞生以来,我们就被警告说,可以复制人类思维过程的计算系统即将到来。在我们意识到这一点之前,计算机将变得如此智能,人类将幸运地被当作宠物饲养。然而,尽管人工智能已经变得越来越复杂(比如无人驾驶汽车和下围棋),计算机科学还没有创造出人工通用智能。在《算法是不够的》一书中,赫伯特·罗特布拉特解释了人工通用智能是如何可能的,以及为什么机器人世界末日既不迫在眉睫,也不太可能发生。他提到,智力,就像爱因斯坦所展示的那样,但也像普通人每天所显示的那样,并不仅仅来自遵循特定指令的路径。他强调,“通用智能不是算法优化”,优化过程得到一组合适的参数的机制可以成功地解决特定问题,但是,“优化并不创建参数;它的工作是调整由程序设计者给出的模型参数”。
另外一个在科技界广为流传的是“奇点”神话。奇点是指人工智能进入指数改进过程的时间点。一个如此智能的软件,它能够越来越快地自我完善。1993年计算机科学家凡诺·文格(Vernor Vinge)发表的一篇文章,标题是《即将到来的技术奇点:如何在后人类时代生存》,他预言,“三十年内,我们将拥有创造超人智能的技术手段。不久之后,人类时代将结束。”在2016年3月,AlphaGo战胜围棋世界冠军李世石后,媒体经常报导和炒作霍金和马斯克对于“人工智能可能会毁灭人类”的警告。在21世纪10年代,斯蒂芬·霍金(剑桥大学理论物理学家)和埃隆·马斯克(美国太空探索技术公司和特斯拉公司首席执行官),都是传奇式人物。据报道,2016年,马斯克在加利福尼亚州一次会议说,如果人类创造出“具有超级智慧的人工智能产品”,它的各方面能力远超人类,那么人类在强人工智能面前可能会沦为“家猫”。2017年,霍金指出,“人类无法知道我们将无限地得到人工智能的帮助,还是被藐视并被边缘化,或者很可能被它毁灭”。另一方面,霍金和马斯克也都对机器学习技术抱有兴奋和渴望的乐观情绪。2017年,在特斯拉公司学术和行业研究人员一次聚会上,马斯克宣称特斯拉的人工智能是世界上最好的。马斯克说,他的公司不仅仅是一家电动汽车制造商,更像是一家人工智能机器人公司。特斯拉正在开发一支最强大的软硬件人工智能团队,以彻底改变全球人工智能和机器人生态系统。2017年4月,霍金发表过《让人工智能造福人类及其赖以生存的家园(Guiding AI to Benefit humanity and the environment)》的主题演讲,指出,“简单来说,我认为强人工智能的崛起,要么是人类历史上最好的事,要么是最糟的”。霍金承认人工智能或许能够用于根除疾病和贫困。科学界许多人认为,在可见的未来,不必担心人工智能会人类生存构成威胁。虽然马斯克和霍金等曾多次警告人工智能将超过人类,2017年在《哈佛商业评论》举办的一次会议上,知名的人工智能学专家吴恩达表示,这种情况在不远的将来是不可能出现的。吴恩达在《哈佛商业评论》举办的一次会议上表示,人工智能的智力在不久的将来不可能超过人类,我们更应当担心机器学习带来的工作岗位的流失。
AGI(Artificial General Intelligence人工通用智能)是智能主体能够理解或学习人类可以执行的任何智力任务,而不是专注于特定的任务。它有点像人脑,理论上它应该能够像人脑一样思考和运作,能够理解不同的内容,理解问题,决定在复杂的情况下什么是最好的。这正是AGI尚未实现的原因。从技术上讲,我们还不能制造出如此复杂的东西,而且我们也不确定人脑到底是如何工作的。AGI也可以称为强AI,全AI。如前所述,这是人工智能(AI)的最初目标,不过,到目前为止,没有一个人工智能程序可以称为AGI。
机器学习的未来令人兴奋。机器学习正在改变我们的生活。最近,自动驾驶汽车、智能助手、机器人和智慧城市管理已经证明,智能机器是可以想象的,并且可以产生诱人的效果,改变大多数行业领域,如零售、生产、建筑、会计、医疗服务、媒体和工程。艾伦·图灵1950年在他的开创性著作的《计算机器与智能》一文中所说,“我们只能看到前面不远的地方,但我们可以看到很多需要做的事情”(参考资料[4])。2020年12月23日在“推动 AI 前进:跨学科方法”为主题的《AI Debate 2》辩论会上,有十几位顶尖的计算机科学家,对人工智能下一步发展,各抒己见。例如,斯坦福大学教授李飞飞指出:“在真实环境中感知与行动之间不断循环互动,将引发人工智能的新一轮进化”。的确,所有复杂智能所需的智力发展,取决于与环境的相互作用。研究以及构建这种具备互动学习能力的智能体是重要方向,这些智能体使用感知和驱动来学习和理解世界。加州大学洛杉矶分校教授朱迪亚·珀尔(Judea Pearl,图灵奖得主)反对仅仅依赖数据的文化,提出了一套基于结构的关于因果的数学语言和理论,作为因果科学是回答因果问题的推理引擎,他称之为“深度理解”。该引擎的特点是 “Knowledge in, Knowledge out, Data in between(知识输入,知识输出,数据在中间)”。在后工业化时期,人们试图制造一台机器,它像人类一样进行各种活动。达到这个科学史上最为雄心勃勃的目标,还有很长的路要走。但是,即使未来实现了人工通用智能,也永远不会和人类智能完全一样。
参考资料
[1] Herbert L. Roitblat.Algorithms Are Not Enough:Creating General Artificial Intelligence.The MIT Press.2020
[2] Martin Ford.Architects of Intelligence: The truth about AI from the people building it. Packt Publishing.2018
[3] Gregory Piatetsky, When will AGI (Artificial General Intelligence) be reached? KDnuggets.2018
[4] A. M. Turing (1950) Computing Machinery and Intelligence. Mind 49: 433-460.