机器学习数学全书,1900 页 PDF 下载

共 1439字,需浏览 3分钟

 ·

2022-05-31 21:07




要搞机器学习离不开数学,本文分享一本来自宾夕法尼亚大学计算机系教授Jean Gallier主编的面向机器学习的“数学全书”,内容涵盖线性代数、概率统计、拓扑学、微积分、最优化理论等面向ML的数学知识,共计1900余页,快来下载收藏吧!来与 AI 大咖一起参与讨论吧~


机器学习,特别是深度学习离不开数学,深度学习的算法和模型的搭建,都需要重要的数学工具作为支撑。不管是对机器学习研究人员,还是立志走上机器学习和AI研究之路的学生来说,打好坚实的数学基础是都至关重要的。

 

在现行的主要机器学习教程中,基本上都会在书中最开始给出必要的数学知识,但一般都比较简略,这些教材一般默认读者已经具备了必要的数学知识。

 

对于没有掌握这些知识的读者来说,很多人需要去学习巩固,甚至在某些学科上从零开始学习。机器学习涉及到的数学学科背景知识比较广泛,除了必须掌握的线性代数、概率统计之外,还需要拓扑学、微积分、最优化理论等学科知识。

 




宾夕法尼亚大学计算机和信息学教授Jean Gallier就与他人合作编撰了一部“面向计算机和机器学习的数学全书”。这着实是本大部头,全书共计1900多页,涵盖了机器学习和深度学习相关的多个数学学科,包括线性代数,拓扑学、微分计算和最优化理论等。这本书的PDF电子版现已放出,需要的读者可以免费下载。

点击卡片,关注后回复【MLMATH】,即可获取


 

全书共分九大部分(不包括附录),共1900余页。以下结合总目录,对本书章节内容进行简要介绍:

 

第一部分:线性代数。本部分篇幅最长,共23章,750余页


第二部分:线性与射影几何,共3章,170余页。




第三部分:双线性形式几何,共3章,约100页



第四部分:Algebra: PID’s, UFD’s, NoetherianRings, Tensors, Modules over a PID, Normal Forms,共7章,约280页


第五部分:拓扑学和微积分,共3章,约130页



第六部分:最优化理论初步,共4章,约60页



第七部分:线性优化,共4章,约100页


第八部分:非线性优化,共5章,约250页



第九部分:机器学习应用,共3章,约100页


第十部分:附录,共2章,约30页

 

另外,大家推荐份来自字节跳动大佬的算法进阶指南,据说有不少小伙伴靠这份指南成功掌握了算法的核心技能,拿到了 BAT offer。希望对大家有帮助。


资料是 70K Star 的《labuladong 的算法小抄》(作者 labuladong)

先来给你们看看里面具体都有哪些内容:


点击卡片,关注后回复【算法】,即可获取

浏览 21
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报
评论
图片
表情
推荐
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报