EfficientNet模型的完整细节
点击上方“小白学视觉”,选择加"星标"或“置顶”
重磅干货,第一时间送达
导读
本文介绍了一种高效的网络模型EfficientNet,并分析了 EfficientNet B0 至B7的网络结构之间的差异。
共同之处
!pip install tf-nightly-gpu
import tensorflow as tf
IMG_SHAPE = (224, 224, 3)
model0 = tf.keras.applications.EfficientNetB0(input_shape=IMG_SHAPE, include_top=False, weights="imagenet")
tf.keras.utils.plot_model(model0) # to draw and visualize
model0.summary() # to see the list of layers and parameters
模块1 — 这是子block的起点。 模块2 — 此模块用于除第一个模块外的所有7个主要模块的第一个子block的起点。 模块3 — 它作为跳跃连接到所有的子block。 模块4 — 用于将跳跃连接合并到第一个子block中。 模块5 — 每个子block都以跳跃连接的方式连接到之前的子block,并使用此模块进行组合。
子block1 — 它仅用于第一个block中的第一个子block。 子block2 — 它用作所有其他block中的第一个子block。 子block3 — 用于所有block中除第一个外的任何子block。
模型结构
EfficientNet-B0
EfficientNet-B1
EfficientNet-B2
EfficientNet-B3
EfficientNet-B4
EfficientNet-B5
EfficientNet-B6
EfficientNet-B7
好消息!
小白学视觉知识星球
开始面向外开放啦👇👇👇
下载1:OpenCV-Contrib扩展模块中文版教程 在「小白学视觉」公众号后台回复:扩展模块中文教程,即可下载全网第一份OpenCV扩展模块教程中文版,涵盖扩展模块安装、SFM算法、立体视觉、目标跟踪、生物视觉、超分辨率处理等二十多章内容。 下载2:Python视觉实战项目52讲 在「小白学视觉」公众号后台回复:Python视觉实战项目,即可下载包括图像分割、口罩检测、车道线检测、车辆计数、添加眼线、车牌识别、字符识别、情绪检测、文本内容提取、面部识别等31个视觉实战项目,助力快速学校计算机视觉。 下载3:OpenCV实战项目20讲 在「小白学视觉」公众号后台回复:OpenCV实战项目20讲,即可下载含有20个基于OpenCV实现20个实战项目,实现OpenCV学习进阶。 交流群
欢迎加入公众号读者群一起和同行交流,目前有SLAM、三维视觉、传感器、自动驾驶、计算摄影、检测、分割、识别、医学影像、GAN、算法竞赛等微信群(以后会逐渐细分),请扫描下面微信号加群,备注:”昵称+学校/公司+研究方向“,例如:”张三 + 上海交大 + 视觉SLAM“。请按照格式备注,否则不予通过。添加成功后会根据研究方向邀请进入相关微信群。请勿在群内发送广告,否则会请出群,谢谢理解~
评论