【深度学习】深度学习手写代码汇总(建议收藏,面试用)
共 44529字,需浏览 90分钟
·
2021-09-02 23:12
这几天一些同学在面试的时候,遇到了一些手写代码的题,因为之前都没有准备到,所以基本上在写的时候都有点蒙。
今天我就把一些常见的考题给大家整理下,这些题也是我之前准备面试的时候整理的,很多的代码都是网上现有的代码,感谢各位大佬的付出,我这里就作为一个搬运工了,把这些代码跟我之前整理到的一些资料都给大家系统整理下,希望各位也可以去他们那里给个star或者赞!
https://github.com/heyxhh/nnet-numpy
https://gitee.com/bitosky/numpy_cnn
https://blog.csdn.net/csuyzt/article/details/82633051
https://github.com/yizt/numpy_neural_network
上面的大佬们,主要是使用numpy来搭建了一个神经网络,我之前也是参考这些大佬们的代码准备的面试。这里给大家安利下他们的代码库,当然,需要配合下我之前的一些文章呀~
当然,还有我自己的百面计算机视觉的面经仓库:https://github.com/zonechen1994/CV_Interview,欢迎大佬star!
全连接层的前向与反向
首先看下全连接层的前向与反向,这里先看下之前的一篇文章。
面试必问|手撕反向传播
import numpy as np
# 定义线性层网络
class Linear():
"""
线性全连接层
"""
def __init__(self, dim_in, dim_out):
"""
参数:
dim_in: 输入维度
dim_out: 输出维度
"""
# 初始化参数
scale = np.sqrt(dim_in / 2)
self.weight = np.random.standard_normal((dim_in, dim_out)) / scale
self.bias = np.random.standard_normal(dim_out) / scale
# self.weight = np.random.randn(dim_in, dim_out)
# self.bias = np.zeros(dim_out)
self.params = [self.weight, self.bias]
def __call__(self, X):
"""
参数:
X:这一层的输入,shape=(batch_size, dim_in)
return:
xw + b
"""
self.X = X
return self.forward()
def forward(self):
return np.dot(self.X, self.weight) + self.bias
def backward(self, d_out):
"""
参数:
d_out:输出的梯度, shape=(batch_size, dim_out)
return:
返回loss对输入 X 的梯度(前一层(l-1)的激活值的梯度)
"""
# 计算梯度
# 对input的梯度有batch维度,对参数的梯度对batch维度取平均
d_x = np.dot(d_out, self.weight.T) # 输入也即上一层激活值的梯度
d_w = np.dot(self.X.T, d_out) # weight的梯度
d_b = np.mean(d_out, axis=0) # bias的梯度
return d_x, [d_w, d_b]
Dropout前向与反向
这里给大家分享下我之前的两篇文章:
我丢!算法岗必问!建议收藏!
我再丢! 算法必问!
class Dropout():
"""
在训练时随机将部分feature置为0
"""
def __init__(self, p):
"""
parameters:
p: 保留比例
"""
self.p = p
def __call__(self, X, mode):
"""
mode: 是在训练阶段还是测试阶段. train 或者 test
"""
return self.forward(X, mode)
def forward(self, X, mode):
if mode == 'train':
self.mask = np.random.binomial(1, self.p, X.shape) / self.p
out = self.mask * X
else:
out = X
return out
def backward(self, d_out):
"""
d_out: loss对dropout输出的梯度
"""
return d_out * self.mask
激活函数之ReLu/Sigmoid/Tanh
这里给大家看下我之前关于激活函数的一些总结:
非零均值?激活函数也太硬核了!
Softmax与Sigmoid你还不知道存在这些联系?
ReLu
import numpy as np
# 定义Relu层
class Relu(object):
def __init__(self):
self.X = None
def __call__(self, X):
self.X = X
return self.forward(self.X)
def forward(self, X):
return np.maximum(0, X)
def backward(self, grad_output):
"""
grad_output: loss对relu激活输出的梯度
return: relu对输入input_z的梯度
"""
grad_relu = self.X > 0 # input_z大于0的提放梯度为1,其它为0
return grad_relu * grad_output # numpy中*为点乘
Tanh
class Tanh():
def __init__(self):
self.X = None
def __call__(self, X):
self.X = X
return self.forward(self.X)
def forward(self, X):
return np.tanh(X)
def backward(self, grad_output):
grad_tanh = 1 - (np.tanh(self.X)) ** 2
return grad_output * grad_tanh
Sigmoid
class Sigmoid():
def __init__(self):
self.X = None
def __call__(self, X):
self.X = X
return self.forward(self.X)
def forward(self, X):
return self._sigmoid(X)
def backward(self, grad_output):
sigmoid_grad = self._sigmoid(self.X) * (1 - self._sigmoid(self.X))
return grad_output * sigmoid_grad
def _sigmoid(self, X):
return 1.0 / (1 + np.exp(-X))
卷积层前向与反向传播
卷积在这里,如果你之前用过caffe,你就知道我们卷积是im2col来做的。这里先给出大佬的两段代码/
Im2Col
class Img2colIndices():
"""
卷积网络的滑动计算实际上是将feature map转换成为矩阵乘法的方式。
卷积计算forward前需要将feature map转换成为cols格式,每一次滑动的窗口作为cols的一列
卷积计算backward时需要将cols态的梯度转换成为与输入map shape一致的格式
该辅助类完成feature map --> cols 以及 cols --> feature map
设计卷积、maxpool、average pool都有可能用到该类进行转换操作
"""
def __init__(self, filter_size, padding, stride):
"""
parameters:
filter_shape: 卷积核的尺寸(h_filter, w_filter)
padding: feature边缘填充0的个数
stride: filter滑动步幅
"""
self.h_filter, self.w_filter = filter_size
self.padding = padding
self.stride = stride
def get_img2col_indices(self, h_out, w_out):
"""
获得需要由image转换为col的索引, 返回的索引是在feature map填充后对于尺寸的索引
获得每次卷积时,在feature map上卷积的元素的坐标索引。以后img2col时根据索引获得
i 的每一行,如第r行是filter第r个元素(左右上下的顺序)在不同位置卷积时点乘的元素的位置的row坐标索引
j 的每一行,如第r行是filter第r个元素(左右上下的顺序)在不同位置卷积时点乘的元素的位置的column坐标索引
结果i、j每一列,如第c列是filter第c次卷积的位置卷积的k×k个元素(左右上下的顺序)。
每一列长filter_height*filter_width*C,由于C个通道,每C个都是重复的,表示在第几个通道上做的卷积。
parameters:
h_out: 卷积层输出feature的height
w_out: 卷积层输出feature的width。每次调用imgcol时计算得到
return:
k: shape=(filter_height*filter_width*C, 1), 每挨着的filter_height*filter_width元素值都一样,表示从第几个通道取点
i: shape=(filter_height*filter_width*C, out_height*out_width), 依次待取元素的横坐标索引
j: shape=(filter_height*filter_width*C, out_height*out_width), 依次待取元素的纵坐标索引
"""
i0 = np.repeat(np.arange(self.h_filter), self.w_filter)
i1 = np.repeat(np.arange(h_out), w_out) * self.stride
i = i0.reshape(-1, 1) + i1
i = np.tile(i, [self.c_x, 1])
j0 = np.tile(np.arange(self.w_filter), self.h_filter)
j1 = np.tile(np.arange(w_out), h_out) * self.stride
j = j0.reshape(-1, 1) + j1
j = np.tile(j, [self.c_x, 1])
k = np.repeat(np.arange(self.c_x), self.h_filter * self.w_filter).reshape(-1, 1)
return k, i, j
def img2col(self, X):
"""
基于索引取元素的方法实现img2col
parameters:
x: 输入feature map,shape=(batch_size, channels, height, width)
return:
转换img2col,shape=(h_filter * w_filter*chanels, batch_size * h_out * w_out)
"""
self.n_x, self.c_x, self.h_x, self.w_x = X.shape
# 首先计算出输出特征的尺寸
# 计算输出feature的尺寸,并且保证是整数
h_out = (self.h_x + 2 * self.padding - self.h_filter) / self.stride + 1
w_out = (self.w_x + 2 * self.padding - self.w_filter) / self.stride + 1
if not h_out.is_integer() or not w_out.is_integer():
raise Exception("Invalid dimention")
else:
h_out, w_out = int(h_out), int(w_out) # 上一步在进行除法后类型会是float
# 0填充输入feature map
x_padded = None
if self.padding > 0:
x_padded = np.pad(X, ((0, 0), (0, 0), (self.padding, self.padding), (self.padding, self.padding)), mode='constant')
else:
x_padded = X
# 在计算出输出feature尺寸后,并且0填充X后,获得img2col_indices
# img2col_indices设为实例的属性,col2img时用,避免重复计算
self.img2col_indices = self.get_img2col_indices(h_out, w_out)
k, i, j = self.img2col_indices
# 获得参与卷积计算的col形式
cols = x_padded[:, k, i, j] # shape=(batch_size, h_filter*w_filter*n_channel, h_out*w_out)
cols = cols.transpose(1, 2, 0).reshape(self.h_filter * self.w_filter * self.c_x, -1) # reshape
return cols
def col2img(self, cols):
"""
img2col的逆过程
卷积网络,在求出x的梯度时,dx是col矩阵的形式(filter_height*filter_width*chanels, batch_size*out_height*out_width)
将dx有col格式转换成feature map的原尺寸格式。由get_img2col_indices获得该尺寸下的索引,使用numpt.add.at方法还原成img格式
parameters:
cols: dx的col形式, shape=(h_filter*w_filter*n_chanels, batch_size*h_out*w_out)
"""
# 将col还原成img2col的输出shape
cols = cols.reshape(self.h_filter * self.w_filter * self.c_x, -1, self.n_x)
cols = cols.transpose(2, 0, 1)
h_padded, w_padded = self.h_x + 2 * self.padding, self.w_x + 2 * self.padding
x_padded = np.zeros((self.n_x, self.c_x, h_padded, w_padded))
k, i, j = self.img2col_indices
np.add.at(x_padded, (slice(None), k, i, j), cols)
if self.padding == 0:
return x_padded
else:
return x_padded[:, :, self.padding : -self.padding, self.padding : -self.padding]
Conv2d前向与反向
卷积的过程,会调用im2col的函数。
class Conv2d():
def __init__(self, in_channels, n_filter, filter_size, padding, stride):
"""
parameters:
in_channel: 输入feature的通道数
n_filter: 卷积核数目
filter_size: 卷积核的尺寸(h_filter, w_filter)
padding: 0填充数目
stride: 卷积核滑动步幅
"""
self.in_channels = in_channels
self.n_filter = n_filter
self.h_filter, self.w_filter = filter_size
self.padding = padding
self.stride = stride
# 初始化参数,卷积网络的参数size与输入的size无关
self.W = np.random.randn(n_filter, self.in_channels, self.h_filter, self.w_filter) / np.sqrt(n_filter / 2.)
self.b = np.zeros((n_filter, 1))
self.params = [self.W, self.b]
def __call__(self, X):
# 计算输出feature的尺寸
self.n_x, _, self.h_x, self.w_x = X.shape
self.h_out = (self.h_x + 2 * self.padding - self.h_filter) / self.stride + 1
self.w_out = (self.w_x + 2 * self.padding - self.w_filter) / self.stride + 1
if not self.h_out.is_integer() or not self.w_out.is_integer():
raise Exception("Invalid dimensions!")
self.h_out, self.w_out = int(self.h_out), int(self.w_out)
# 声明Img2colIndices实例
self.img2col_indices = Img2colIndices((self.h_filter, self.w_filter), self.padding, self.stride)
return self.forward(X)
def forward(self, X):
# 将X转换成col
self.x_col = self.img2col_indices.img2col(X)
# 转换参数W的形状,使它适合与col形态的x做计算
self.w_row = self.W.reshape(self.n_filter, -1)
# 计算前向传播
out = self.w_row @ self.x_col + self.b # @在numpy中相当于矩阵乘法,等价于numpy.matmul()
out = out.reshape(self.n_filter, self.h_out, self.w_out, self.n_x)
out = out.transpose(3, 0, 1, 2)
return out
def backward(self, d_out):
"""
parameters:
d_out: loss对卷积输出的梯度
"""
# 转换d_out的形状
d_out_col = d_out.transpose(1, 2, 3, 0)
d_out_col = d_out_col.reshape(self.n_filter, -1)
d_w = d_out_col @ self.x_col.T
d_w = d_w.reshape(self.W.shape) # shape=(n_filter, d_x, h_filter, w_filter)
d_b = d_out_col.sum(axis=1).reshape(self.n_filter, 1)
d_x = self.w_row.T @ d_out_col
# 将col态的d_x转换成image格式
d_x = self.img2col_indices.col2img(d_x)
return d_x, [d_w, d_b]
MaxPool2d
class Maxpool():
def __init__(self, size, stride):
"""
parameters:
size: maxpool框框的尺寸,int类型
stride: maxpool框框的滑动步幅,一般设计步幅和size一样
"""
self.size = size # maxpool框的尺寸
self.stride = stride
def __call__(self, X):
"""
parameters:
X: 输入feature,shape=(batch_size, channels, height, width)
"""
self.n_x, self.c_x, self.h_x, self.w_x = X.shape
# 计算maxpool输出尺寸
self.h_out = (self.h_x - self.size) / self.stride + 1
self.w_out = (self.w_x - self.size) / self.stride + 1
if not self.h_out.is_integer() or not self.w_out.is_integer():
raise Exception("Invalid dimensions!")
self.h_out, self.w_out = int(self.h_out), int(self.w_out)
# 声明Img2colIndices实例
self.img2col_indices = Img2colIndices((self.size, self.size), padding=0, stride=self.stride) # maxpool不需要padding
return self.forward(X)
def forward(self, X):
"""
parameters:
X: 输入feature,shape=(batch_size, channels, height, width)
"""
x_reshaped = X.reshape(self.n_x * self.c_x, 1, self.h_x, self.w_x)
self.x_col = self.img2col_indices.img2col(x_reshaped)
self.max_indices = np.argmax(self.x_col, axis=0)
out = self.x_col[self.max_indices, range(self.max_indices.size)]
out = out.reshape(self.h_out, self.w_out, self.n_x, self.c_x).transpose(2, 3, 0, 1)
return out
def backward(self, d_out):
"""
parameters:
d_out: loss多maxpool输出的梯度,shape=(batch_size, channels, h_out, w_out)
"""
d_x_col = np.zeros_like(self.x_col) # shape=(size*size, h_out*h_out*batch*C)
d_out_flat = d_out.transpose(2, 3, 0, 1).ravel()
d_x_col[self.max_indices, range(self.max_indices.size)] = d_out_flat
# 将d_x由col形态转换到img形态
d_x = self.img2col_indices.col2img(d_x_col)
d_x = d_x.reshape(self.n_x, self.c_x, self.h_x, self.w_x)
return d_x
当然,如果不用Im2col的话,就更好理解了。在平均池化的时候,就不需要进行标记位置,可以直接用均值代替某一个区域就好了。
BatchNorm2d前向反向
这里就要安利下这篇文章了~
最全Normalization!建议收藏,面试必问!
class BatchNorm2d():
"""
对卷积层来说,批量归一化发生在卷积计算之后、应用激活函数之前。
如果卷积计算输出多个通道,我们需要对这些通道的输出分别做批量归一化,且每个通道都拥有独立的拉伸和偏移参数,并均为标量。
设小批量中有 m 个样本。在单个通道上,假设卷积计算输出的高和宽分别为 p 和 q 。我们需要对该通道中 m×p×q 个元素同时做批量归一化。
对这些元素做标准化计算时,我们使用相同的均值和方差,即该通道中 m×p×q 个元素的均值和方差。
将训练好的模型用于预测时,我们希望模型对于任意输入都有确定的输出。
因此,单个样本的输出不应取决于批量归一化所需要的随机小批量中的均值和方差。
一种常用的方法是通过移动平均估算整个训练数据集的样本均值和方差,并在预测时使用它们得到确定的输出。
"""
def __init__(self, n_channel, momentum):
"""
parameters:
n_channel: 输入feature的通道数
momentum: moving_mean/moving_var迭代调整系数
"""
self.n_channel = n_channel
self.momentum = momentum
# 参与求梯度和迭代的拉伸和偏移参数,分别初始化成1和0
self.gamma = np.ones((1, n_channel, 1, 1))
self.beta = np.zeros((1, n_channel, 1, 1))
# 测试时使用的参数,初始化为0,需在训练时动态调整
self.moving_mean = np.zeros((1, n_channel, 1, 1))
self.moving_var = np.zeros((1, n_channel, 1, 1))
self.params = [self.gamma, self.beta]
def __call__(self, X, mode):
"""
X: shape = (N, C, H, W)
mode: 训练阶段还是测试阶段,train或test, 需要在调用时传参
"""
self.X = X # 求gamma的梯度时用
return self.forward(X, mode)
def forward(self, X, mode):
"""
X: shape = (N, C, H, W)
mode: 训练阶段还是测试阶段,train或test, 需要在调用时传参
"""
if mode != 'train':
# 如果是在预测模式下,直接使用传入的移动平均所得的均值和方差
self.x_norm = (X - self.moving_mean) / np.sqrt(self.moving_var + 1e-5)
else:
# 使用二维卷积层的情况,计算通道维上(axis=1)的均值和方差。
# 这里我们需要保持X的形状以便后面可以做广播运算
mean = X.mean(axis=(0, 2, 3), keepdims=True)
self.var = X.var(axis=(0, 2, 3), keepdims=True) # 设为self,是因为backward时会用到
# 训练模式下用当前的均值和方差做标准化。设为类实例的属性,backward时用
self.x_norm = (X - mean) / (np.sqrt(self.var + 1e-5))
# 更新移动平均的均值和方差
self.moving_mean = self.momentum * self.moving_mean + (1 - self.momentum) * mean
self.moving_var = self.momentum * self.moving_var + (1 - self.momentum) * self.var
# 拉伸和偏移
out = self.x_norm * self.gamma + self.beta
return out
def backward(self, d_out):
"""
d_out的形状与输入的形状一样
"""
d_gamma = (d_out * self.x_norm).sum(axis=(0, 2, 3), keepdims=True)
d_beta = d_out.sum(axis=(0, 2, 3), keepdims=True)
d_x = (d_out * self.gamma) / np.sqrt(self.var + 1e-5)
return d_x, [d_gamma, d_beta]
Flatten层
这个层的作用,主要是进行tensor拉直的操作,方便进行全连接的进行。
class Flatten():
"""
最后的卷积层输出的feature若要连接全连接层需要将feature拉平
单独建立一个模块是为了方便梯度反向传播
"""
def __init__(self):
pass
def __call__(self, X):
self.x_shape = X.shape # (batch_size, channels, height, width)
return self.forward(X)
def forward(self, X):
out = X.ravel().reshape(self.x_shape[0], -1)
return out
def backward(self, d_out):
d_x = d_out.reshape(self.x_shape)
return d_x
损失函数
这里以交叉熵损失函数为例:
import numpy as np
# 交叉熵损失
class CrossEntropyLoss():
"""
对最后一层的神经元输出计算交叉熵损失
"""
def __init__(self):
self.X = None
self.labels = None
def __call__(self, X, labels):
"""
参数:
X: 模型最后fc层输出
labels: one hot标注,shape=(batch_size, num_class)
"""
self.X = X
self.labels = labels
return self.forward(self.X)
def forward(self, X):
"""
计算交叉熵损失
参数:
X:最后一层神经元输出,shape=(batch_size, C)
label:数据onr-hot标注,shape=(batch_size, C)
return:
交叉熵loss
"""
self.softmax_x = self.softmax(X)
log_softmax = self.log_softmax(self.softmax_x)
cross_entropy_loss = np.sum(-(self.labels * log_softmax), axis=1).mean()
return cross_entropy_loss
def backward(self):
grad_x = (self.softmax_x - self.labels) # 返回的梯度需要除以batch_size
return grad_x / self.X.shape[0]
def log_softmax(self, softmax_x):
"""
参数:
softmax_x, 在经过softmax处理过的X
return:
log_softmax处理后的结果shape = (m, C)
"""
return np.log(softmax_x + 1e-5)
def softmax(self, X):
"""
根据输入,返回softmax
代码利用softmax函数的性质: softmax(x) = softmax(x + c)
"""
batch_size = X.shape[0]
# axis=1 表示在二维数组中沿着横轴进行取最大值的操作
max_value = X.max(axis=1)
#每一行减去自己本行最大的数字,防止取指数后出现inf,性质:softmax(x) = softmax(x + c)
# 一定要新定义变量,不要用-=,否则会改变输入X。因为在调用计算损失时,多次用到了softmax,input不能改变
tmp = X - max_value.reshape(batch_size, 1)
# 对每个数取指数
exp_input = np.exp(tmp) # shape=(m, n)
# 求出每一行的和
exp_sum = exp_input.sum(axis=1, keepdims=True) # shape=(m, 1)
return exp_input / exp_sum
优化器
一文搞定面试中的优化算法
SGD
- END -class SGD():
"""
随机梯度下降
parameters: 模型需要训练的参数
lr: float, 学习率
momentum: float, 动量因子,默认为None不使用动量梯度下降
"""
def __init__(self, parameters, lr, momentum=None):
self.parameters = parameters
self.lr = lr
self.momentum = momentum
if momentum is not None:
self.velocity = self.velocity_initial()
def update_parameters(self, grads):
"""
grads: 调用network的backward方法,返回的grads.
"""
if self.momentum == None:
for param, grad in zip(self.parameters, grads):
param -= self.lr * grad
else:
for i in range(len(self.parameters)):
self.velocity[i] = self.momentum * self.velocity[i] - self.lr * grads[i]
self.parameters[i] += self.velocity[i]
def velocity_initial(self):
"""
初始化velocity,按照parameters的参数顺序依次将v初始化为0
"""
velocity = []
for param in self.parameters:
velocity.append(np.zeros_like(param))
return velocity
作者简介:复旦在读博士,94年已婚有娃的前bt算法工程师。双非材料本科出身,零基础跨专业考研到985cs专业。
往期精彩回顾 本站qq群851320808,加入微信群请扫码: