人工智能服装设计师,细分领域一览 | FashionHack 专栏

共 3346字,需浏览 7分钟

 ·

2021-04-24 20:48


上一篇:《时尚的未来,会以怎样的形式出现?》









智能时尚 vs 时尚智能



不论科技行业时尚化,还是时尚行业智能化,二者的跨界融合已成必然趋势。但首先,我们需要明确,这两个概念的不同,以及共同之处。

 

智能时尚
更多指对利用纺织、服装、电子、信息、材料、传感及系统控制等技术加工制成的能够感知、响应或适应外界环境变化及刺激的纺织及服装产品(fashion时尚一词也有服装的涵义),如智能纺织品、可穿戴设备等。
 
时尚智能
更多指人工智能在时尚产业价值链的任何一个环节的应用落地,如智能设计、智能制造、智能物流、智能营销和销售等。
 
而他们最大的不同就是:前者更加偏向于硬件(传感器等各类电子元器件),而后者更偏软件(通过计算机编程来实现人工智能算法)。
 
当然在软硬件早已密不可分的今天,这二者之间也存在相当紧密的联系。
 



智能服装
 
20世纪60年代,Pierre Cardin(皮尔·卡丹)借着阿波罗登月一热点推出了一系列充满太空高科技元素的头盔、连体衣、透明面罩等,后来Alexander McQueen(亚历山大·麦昆)也将科技融入到自己的系列中。
 
Alexander McQueen 1999年春夏
 


现如今,科技的发展带动了传统时尚行业的进步,服装不仅具有传统的御寒保暖装饰等作用, 还具备监测人体健康、沟通交流、情绪表达等功能。

目前,国内外的相关应用可归纳于以下几个领域。
 

① 智能生活领域
Google 旗下进科技与计划部门(ATAP)的 Project Jacquard,研究将触控与手势互动能力融入各种布料,关键是如何将棉、丝等布料成分结合合金,导入可传送触控讯号的智能纱线,并以触觉感应(haptics)互动。
 

Google 与牛仔品牌 Levi's 推出的新款牛仔褛,用户只要穿上外套、连接电话的蓝牙讯号,对感测器做出向内、向外、轻拍两下、覆盖等不同手势,就能操作执行包括自拍、音讯、记录、导航、Google 助理等功能。

 
据彭博社报道,Project Jacquard 不是将电子设备缝入或粘合至成衣,而是使用现有工业织机将高科技导电纤维织入面料,以此实现无边无际的创意延伸和时尚设计

Google 公司表明:“对于时尚行业来说,Jacquard 是一块空白画布,设计师可以使用它在设计中添加新的功能层,不仅不限制面料品种,还不必学习相关电子知识。”
 
Project Jacquard 宣传片



② 医疗健康领域
联想开发的 “SmartVest 智能心电衣”,可以360度扫描用户心脏,随时监控用户导联的心电图,生成心率的数据 ,并可将数据传送至手机端,方便用户了解自身身体情况,并为用户制定健康的训练方案。
 




③ 国防军事领域
变色服装最早运用于军事领域,它是指在不同波长的光照下可发生颜色变化的服装,它能依照周围的环境改变颜色,这种 “变色龙军服” 不但可以有效防弹,还能检测到生化武器,防止被袭击,同时还能根据穿着情况调整服装的温度。


据俄罗斯红星网近日报道称,“罗斯电子”控股有限公司已经研发出一系列能够 “变色” 的服装。“这种服装是通过智能涂层设计来实现变色功能的。” 该公司新闻发言人称。




④ 航天航空领域
在航天航空领域,智能服装可以同时监测航天员的体温和呼吸速率,对航天员的这两项生理特征进行实时监控,确保飞行安全。





时尚智能
 
时尚智能更多指将各类计算机技术、人工智能技术等应用于具体场景,主要包括但不限于以下任务。
 

① 服装解析
服装解析是指将时尚图像(Fashion Photographs)分割成多个语义上一致的区域,例如,身体部位、衣物、鞋子等。

作为一种细粒度的语义分割任务,它比仅是寻找人体轮廓的人物分割更具挑战性。
 
来自论文Parsing Clothing in Fashion Photographs



② 风格分类 
Wei-Lin Hsiao等人提出了一种无监督的方法来学习一种风格相干(Style-Coherent)的表示。通过算法学习到不同的服装图像风格以及相应风格的浓烈程度。


从学院风(Preppy)到哥特风(Goth),波西米亚风(Bohemian)到嬉皮(Hipster)



③ 服饰产品检索
我们常见的电商平台可以让用户直接输入图片来实现以图搜图,或者用户直接拍照来搜索产品。但是有些产品可能不是用户完全想要的,例如以下场景:


用户也许只是想要这种带毛领的大衣,但不喜欢它的颜色,那这时用户就希望能够改变产品的某种属性,再进行针对性地搜索。

相关论文:

Memory-Augmented Attribute Manipulation Networks for Interactive Fashion Search

 


④ 服装数字化
主要是利用各类新技术,如AR、VR、3D建模等,在数字世界中对服装产品进行模拟和仿真。目前大多落地在虚拟试衣(Visual Try-on)和服装设计(Fashion Desgin)等领域。

hologarment 宣传片
利用VR辅助服装设计
 
用CLO3D制作的3D模型(左)
一定程度上可代替传统服装产品制造过程中的打样环节(右)
 



⑤ 服装设计智能化 / 服饰图像生成
智能化则是数字化的进一步发展和探索。
 
目前的研究较主流是利用图像生成来实现辅助设计,而图像生成本质是从现有数据集中生成新图像的任务。
 
近年来,生成图像领域出现了不少成果,其中最前沿的是GAN(Generative Adversarial Nets),它能直接从数据中学习,生成高保真、多样化的图像。虽然GAN的训练是动态的,而且对各方面的设置都很敏感(从优化参数到模型架构),但大量研究已经证实,这种方法可以在各种环境中稳定训练。
 
SCRY品牌应用GAN,结合近万双鞋款和设计师自身的设计语言,为新鞋款的开发带来了灵感。
 


以下是近期 AI时尚社群 部分讨论精选:
 

狐狸fox:“GAN生成服装成功的客观标准是什么?有没有机会判定其美学价值?”   

 

Tim:“服装设计生产关系目前还是比较中心化的-少数设计师为大众设计服装。如果可以通过智能化将设计的门槛降下来,通过虚拟化将生产和穿搭的门槛降下来,那么是否会产生类似 web2.0 的生产关系-审美标准的更加多元化,人人都是设计师,人人也都是自己风格的模特。”                                              -


欢迎加群与我们进一步分享交流,FashionHack 想和你一起探索、向前!



*预告
在之后的专栏里,我将详细介绍:深度学习在审美 / 美学、推荐、个性化 / 定制等时尚的细分领域应用


排版 / 编辑:春FANG
排版建议:MooDesign


-END-
 

FASHIONHACK 专栏作者

石多恩 Stone
本科专业是智能科学与技术
东华大学服装设计与工程专业硕士(9月)
『探索方向』:将AI技术应用于服装时尚领域
全平台ID:石多恩_Ston1






参考资料详见原文

 

浏览 28
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报
评论
图片
表情
推荐
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报