Redis 实战篇:巧用 Bitmap 实现亿级海量数据统计

共 4523字,需浏览 10分钟

 ·

2021-06-07 15:49


在移动应用的业务场景中,我们需要保存这样的信息:一个 key 关联了一个数据集合。

常见的场景如下:

  • 给一个 userId ,判断用户登陆状态;
  • 显示用户某个月的签到次数和首次签到时间;
  • 两亿用户最近 7 天的签到情况,统计 7 天内连续签到的用户总数;

通常情况下,我们面临的用户数量以及访问量都是巨大的,比如百万、千万级别的用户数量,或者千万级别、甚至亿级别的访问信息。

所以,我们必须要选择能够非常高效地统计大量数据(例如亿级)的集合类型。

如何选择合适的数据集合,我们首先要了解常用的统计模式,并运用合理的数据类型来解决实际问题。

四种统计类型:

  1. 二值状态统计;
  2. 聚合统计;
  3. 排序统计;
  4. 基数统计。

本文将由二值状态统计类型作为实战篇系列的开篇,文中将用到 String、Set、Zset、List、hash 以外的拓展数据类型 Bitmap 来实现。

文章涉及到的指令可以通过在线 Redis 客户端运行调试,地址:https://try.redis.io/,超方便的说。

二值状态统计

码哥,什么是二值状态统计呀?

也就是集合中的元素的值只有 0 和 1 两种,在签到打卡和用户是否登陆的场景中,只需记录签到(1)未签到(0)已登录(1)未登陆(0)

假如我们在判断用户是否登陆的场景中使用 Redis 的 String 类型实现(key -> userId,value -> 0 表示下线,1 - 登陆),假如存储 100 万个用户的登陆状态,如果以字符串的形式存储,就需要存储 100 万个字符串了,内存开销太大。

码哥,为什么 String 类型内存开销大?

String 类型除了记录实际数据以外,还需要额外的内存记录数据长度、空间使用等信息。

当保存的数据包含字符串,String 类型就使用简单动态字符串(SDS)结构体来保存,如下图所示:

SDS
  • len:占 4 个字节,表示 buf 的已用长度。
  • alloc:占 4 个字节,表示 buf 实际分配的长度,通常 > len。
  • buf:字节数组,保存实际的数据,Redis 自动在数组最后加上一个 “\0”,额外占用一个字节的开销。

所以,在 SDS 中除了 buf 保存实际的数据, len 与 alloc 就是额外的开销。

另外,还有一个 RedisObject 结构的开销,因为 Redis 的数据类型有很多,而且,不同数据类型都有些相同的元数据要记录(比如最后一次访问的时间、被引用的次数等)。

所以,Redis 会用一个 RedisObject 结构体来统一记录这些元数据,同时指向实际数据。

对于二值状态场景,我们就可以利用 Bitmap 来实现。比如登陆状态我们用一个 bit 位表示,一亿个用户也只占用 一亿 个 bit 位内存 ≈ (100000000 / 8/ 1024/1024)12 MB。

大概的空间占用计算公式是:($offset/8/1024/1024) MB

什么是 Bitmap 呢?

Bitmap 的底层数据结构用的是 String 类型的 SDS 数据结构来保存位数组,Redis 把每个字节数组的 8 个 bit 位利用起来,每个 bit 位 表示一个元素的二值状态(不是 0 就是 1)。

可以将 Bitmap 看成是一个 bit 为单位的数组,数组的每个单元只能存储 0 或者 1,数组的下标在 Bitmap 中叫做 offset 偏移量。

为了直观展示,我们可以理解成 buf 数组的每个字节用一行表示,每一行有 8 个 bit 位,8 个格子分别表示这个字节中的 8 个 bit 位,如下图所示:

Bitmap

8 个 bit 组成一个 Byte,所以 Bitmap 会极大地节省存储空间。 这就是 Bitmap 的优势。

判断用户登陆态

怎么用 Bitmap 来判断海量用户中某个用户是否在线呢?

Bitmap 提供了 GETBIT、SETBIT 操作,通过一个偏移值 offset 对 bit 数组的 offset 位置的 bit 位进行读写操作,需要注意的是 offset 从 0 开始。

只需要一个 key = login_status 表示存储用户登陆状态集合数据, 将用户 ID 作为 offset,在线就设置为 1,下线设置 0。通过 GETBIT判断对应的用户是否在线。50000 万 用户只需要 6 MB 的空间。

SETBIT 命令

SETBIT <key> <offset> <value>

设置或者清空 key 的 value 在 offset 处的 bit 值(只能是 0 或者 1)。

GETBIT 命令

GETBIT <key> <offset>

获取 key 的 value 在 offset 处的 bit 位的值,当 key 不存在时,返回 0。

假如我们要判断 ID = 10086 的用户的登陆情况:

第一步,执行以下指令,表示用户已登录。

SETBIT login_status 10086 1

第二步,检查该用户是否登陆,返回值 1 表示已登录。

GETBIT login_status 10086

第三步,登出,将 offset 对应的 value 设置成 0。

SETBIT login_status 10086 0

用户每个月的签到情况

在签到统计中,每个用户每天的签到用 1 个 bit 位表示,一年的签到只需要 365 个 bit 位。一个月最多只有 31 天,只需要 31 个 bit 位即可。

比如统计编号 89757 的用户在 2021 年 5 月份的打卡情况要如何进行?

key 可以设计成 uid:sign:{userId}:{yyyyMM},月份的每一天的值 - 1 可以作为 offset(因为 offset 从 0 开始,所以 offset = 日期 - 1)。

第一步,执行下面指令表示记录用户在 2021 年 5 月 16 号打卡。

SETBIT uid:sign:89757:202105 15 1

第二步,判断编号 89757 用户在 2021 年 5 月 16 号是否打卡。

GETBIT uid:sign:89757:202105 15

第三步,统计该用户在 5 月份的打卡次数,使用 BITCOUNT 指令。该指令用于统计给定的 bit 数组中,值 = 1 的 bit 位的数量。

BITCOUNT uid:sign:89757:202105

这样我们就可以实现用户每个月的打卡情况了,是不是很赞。

如何统计这个月首次打卡时间呢?

Redis 提供了 BITPOS key bitValue [start] [end]指令,返回数据表示 Bitmap 中第一个值为 bitValue 的 offset 位置。

在默认情况下, 命令将检测整个位图, 用户可以通过可选的 start 参数和 end 参数指定要检测的范围。

所以我们可以通过执行以下指令来获取 userID = 89757 在 2021 年 5 月份首次打卡日期:

BITPOS uid:sign:89757:202105 1

需要注意的是,我们需要将返回的 value + 1 ,因为 offset 从 0 开始。

连续签到用户总数

在记录了一个亿的用户连续 7 天的打卡数据,如何统计出这连续 7 天连续打卡用户总数呢?

我们把每天的日期作为 Bitmap 的 key,userId 作为 offset,若是打卡则将 offset 位置的 bit 设置成 1。

key 对应的集合的每个 bit 位的数据则是一个用户在该日期的打卡记录。

一共有 7 个这样的 Bitmap,如果我们能对这 7 个 Bitmap 的对应的 bit 位做 『与』运算。

同样的 UserID  offset 都是一样的,当一个 userID 在 7 个 Bitmap 对应对应的 offset 位置的 bit = 1 就说明该用户 7 天连续打卡。

结果保存到一个新 Bitmap 中,我们再通过 BITCOUNT 统计 bit = 1 的个数便得到了连续打卡 7 天的用户总数了。

Redis 提供了 BITOP operation destkey key [key ...]这个指令用于对一个或者多个 键 = key 的 Bitmap 进行位元操作。

opration 可以是 andORNOTXOR。当 BITOP 处理不同长度的字符串时,较短的那个字符串所缺少的部分会被看作 0 。空的 key 也被看作是包含 0 的字符串序列。

便于理解,如下图所示:

BITOP

3 个 Bitmap,对应的 bit 位做「与」操作,结果保存到新的 Bitmap 中。

操作指令表示将 三个 bitmap 进行 AND 操作,并将结果保存到 destmap 中。接着对 destmap 执行 BITCOUNT 统计。

// 与操作
BITOP AND destmap bitmap:01 bitmap:02 bitmap:03
// 统计 bit 位 =  1 的个数
BITCOUNT destmap

简单计算下 一个一亿个位的 Bitmap占用的内存开销,大约占 12 MB 的内存(10^8/8/1024/1024),7 天的 Bitmap 的内存开销约为 84 MB。同时我们最好给 Bitmap 设置过期时间,让 Redis 删除过期的打卡数据,节省内存。

小结

思路才是最重要,当我们遇到的统计场景只需要统计数据的二值状态,比如用户是否存在、 ip 是否是黑名单、以及签到打卡统计等场景就可以考虑使用 Bitmap。

只需要一个 bit 位就能表示 0 和 1。在统计海量数据的时候将大大减少内存占用。


1、Intellij IDEA这样 配置注释模板,让你瞬间高出一个逼格!
2、基于SpringBoot的迷你商城系统,附源码!
3、最牛逼的 Java 日志框架,性能无敌,横扫所有对手!
4、把Redis当作队列来用,真的合适吗?
5、惊呆了,Spring Boot居然这么耗内存!你知道吗?
6、全网最全 Java 日志框架适配方案!还有谁不会?
7、Spring中毒太深,离开Spring我居然连最基本的接口都不会写了

点分享

点收藏

点点赞

点在看

浏览 35
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报
评论
图片
表情
推荐
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报