CVPR 2020 SLAM挑战赛冠军方案解读,搞定超难数据集TartanAir
![](https://filescdn.proginn.com/64ffab6e0787abf355b2b40bc62c2606/013ce74e1fece4369e2566c11c8bf2d4.webp)
极市导读
在CVPR 2020 SLAM挑战赛上,旷视研究院参赛团队获得了两个赛道的冠军。本文分享了他们采用的技术方案,并介绍了旷视SLAM机器人研究进展。
![](https://filescdn.proginn.com/a0847c38c870b283881c24af1f939144/8f006f282cdfd0e4a683d62627078dc4.webp)
![](https://filescdn.proginn.com/e4c652a09b02d611b97dbc21dc5be2f8/763ebb25a19df6a5b6805a09e6562ee9.webp)
![](https://filescdn.proginn.com/026c5255a18e039aadcdf0d3b869ffb8/10fe9d620a006ef5c8a06000143ff064.webp)
![](https://filescdn.proginn.com/7ada460f959cbab15457d43477330234/83e7089935eee754b74eca4e5a32fd3c.webp)
![](https://filescdn.proginn.com/19c25d0918c393fb18f612116cb174af/70a103380a3bb47af36e2c66fbd7bd0e.webp)
![](https://filescdn.proginn.com/58a03590910ccb72bd4558d8f3f2066e/876a93b7943adc2f18e6f20ebe3d2f80.webp)
![](https://filescdn.proginn.com/0affde17baeb2add6d15fa2babcf31ab/702cb1b61459532ae6b82b57660f9b6a.webp)
![](https://filescdn.proginn.com/448ee1749d2acc7088f66cf7c12fcee6/768fef1f6882690bba84048bb25ca612.webp)
![](https://filescdn.proginn.com/00f6166ffbbb6065319355883ee7a626/93f33cf8984c50569c02c55353cec2a5.webp)
技术方案
1.Mono Track
![](https://filescdn.proginn.com/f64386b88ebe785dfc60d55b110de30e/3b39184c769b9e85e044ec78103cc056.webp)
用 COLMAP 作为 baseline 方法
![](https://filescdn.proginn.com/b3b91247a67abbfb14ce92bbc61f8541/d9bc9892a3102530978655a41a37c37a.webp)
用 SuperPoint 和 SuperGlue 进行特征提取和匹配
![](https://filescdn.proginn.com/9a41f216de4c007070b4ad772dfda33e/d1e5358184e2b91afda75fd6ad10de11.webp)
根据环境进行动态阈值调整
![](https://filescdn.proginn.com/75850bb559709ec67ea4224d57942050/6b147561534b966097720169555583a5.webp)
Loop detection via BoW and geometric validation
![](https://filescdn.proginn.com/3e3968e97832038dba4ffc6e7f6d9af4/3bb91d9e86980c134d4b41b710e675c5.webp)
![](https://filescdn.proginn.com/c6d63d38792d57498d14803aa1ff7515/8c4d5ba58ba3e8d79945cc03082dd261.webp)
![](https://filescdn.proginn.com/91cb0bf67d22ea870d9b9cc7021f2f8c/95569b562dc24a8bdfd19768cd0fefd7.webp)
2.Stereo Track
![](https://filescdn.proginn.com/c40cf294b82f281f2709be631d121f09/650168dfa5c941f2d209d82c7abd3923.webp)
由于 COLMAP 不支持双目,首先将 COLMAP 改成双目的 COLMAP,主要添加了COLMAP 中双目的初始化,双目匹配,以及适配于双目的 BA。流程图如下:
![](https://filescdn.proginn.com/4b01fada7322cab7f67724b3a20ff15a/fa2984f2d50e657596e11a0297d7bb3c.webp)
跟单目的做法一样用 SuperPoint 和 SuperGlue 进行特征提取和匹配 同时使用 SIFT 特征点和 SuperPoint 特征点进行 Mapping
其他做法跟单目相同。
![](https://filescdn.proginn.com/f442ef3777145d8341bf42a003410fa3/f12d49d8271f781c74b108ecad189643.webp)
![](https://filescdn.proginn.com/0975198bd14b21bf749a37ce27e5efcc/34077dbd2ee5b55a92304454dd6dd04a.webp)
总结
![](https://filescdn.proginn.com/720513a865bfc166626874954c1453df/185ecb725a3c3dff8c2988e41b3adbb4.webp)
![](https://filescdn.proginn.com/8b2eb3eae269f94788323f844378f88b/0bc08a7a6bcd4987496d290ccded47eb.webp)
延伸阅读:旷视SLAM机器人
MegBot-S800 AMR
推荐阅读
![](https://filescdn.proginn.com/852e429cd39129d1f49eab694fae76c7/59115eadd0dfb75b9c240591bcd6881f.webp)
评论