资源|机器学习/深度学习线上开放课程集锦
共 4677字,需浏览 10分钟
·
2020-08-12 15:40
写在最前面
本文整理了机器学习/深度学习比较优秀的线上开放课程,主要为了方便小伙伴们个人学习所用,目前机器学习与深度学习发展迅速,新的课程也层出不穷,所以本帖也会不定期更新,包括更新课程网址以及添加新的好课程。所以,各位小伙伴有比较好的课程一定要在评论区留言,我看到后会将其更新上来,以分享给其它小伙伴。也欢迎留下你的赞!
注意这里对各个课程并没有做好与坏的评论,一般来说,入门机器学习的经典课程是Stanford: CS229,入门深度学习的经典课程是Stanford: CS231n。
1
Table of Contents
Deep Learning
Machine Learning
Reinforcement Learning
Computer Vision
Artificial Intelligence
2
Deep Learning
[CMU: 11-785 Introduction to Deep Learning](http://deeplearning.cs.cmu.edu/) [Spring 2018] [DL]
[Stanford: CS230 Deep Learning](https://web.stanford.edu/class/cs230/) [Winter 2018][DL] [[Ng中文笔记-黄海广](http://www.ai-start.com/)]
[University of Chicago: CMSC 35246 Deep Learning ](http://ttic.uchicago.edu/~shubhendu/Pages/CMSC35246.html) [Spring 2017][DL]
[Stanford: CS231n Convolutional Neural Networks for Visual Recognition](http://cs231n.stanford.edu/) [Spring 2017][CV] [[中文翻译](http://www.mooc.ai/course/268#modal)]
[Stanford: CS224n Natural Language Processing with Deep Learning](http://web.stanford.edu/class/cs224n/) [Winter 2018][NLP]
[Stanford: CS 20 Tensorflow for Deep Learning Research](http://web.stanford.edu/class/cs20si/) [Winter 2018][TensorFlow]
[Stanford: Theories of Deep Learning (STATS 385)](https://stats385.github.io/) [Fall 2017][DL]
[CMU: 10707 Deep Learning](http://www.cs.cmu.edu/~rsalakhu/10707/) [Fall 2017][DL]
[National Taiwan University: Applied Deep Learning /Machine Learning and Having It Deep and Structured](https://www.csie.ntu.edu.tw/~yvchen/f106-adl/) [2017 Fall][DL] [[Hung-yi Lee](http://speech.ee.ntu.edu.tw/~tlkagk/index.html)]
[Theano: Deep Learning Tutorials](http://deeplearning.net/tutorial/) [Theano]
[Mxnet: Deep Learning-The Straight Dope](http://gluon.mxnet.io/) [2017][Mxnet] [[中文](http://zh.gluon.ai/)]
[MIT: 6.S191 Introduction to Deep Learning](http://introtodeeplearning.com/) [2018][DL]
[UVA: DEEP LEARNING COURSE](http://uvadlc.github.io/) [DL]
[Fast.ai: Practical Deep Learning For Coders](http://course.fast.ai/) [2018][DL]
[CMU: CS 11-747 Neural networks fro NLP](http://phontron.com/class/nn4nlp2018/#) [Spring 2018][NLP]
[Stanford: CS224S / LINGUIST285 - Spoken Language Processing](http://web.stanford.edu/class/cs224s/) [Spring 2017][Speech Recognition]
[Berkeley: CS 294-131: Special Topics in Deep Learning](https://berkeley-deep-learning.github.io/cs294-131-f17/) [Fall 2017][Advanced DL]
[CMU: 16-385 Computer Vision](http://www.cs.cmu.edu/~16385/) [Spring 2018][CV]
[Columbia University: E6894 Deep Learning for Computer Vision, Speech, and Language](http://llcao.net/cu-deeplearning17/schedule.html) [Spring 2017][DL]
[Colorado: CSCI 5922 Neural Networks and Deep Learning](https://www.cs.colorado.edu/~mozer/Teaching/syllabi/DeepLearningFall2017/) [Fall 2017][DL]
[UIUC: CS 598 LAZ Cutting-Edge Trends in Deep Learning and Recognition](http://slazebni.cs.illinois.edu/spring17/) [2017][DL]
[UPC: Deep Learning for Speech and Language](https://telecombcn-dl.github.io/2017-dlsl/) [2017 Winter][Speech Recognition]
[toronto: CSC 321 Intro to Neural Networks and Machine Learning](http://www.cs.toronto.edu/~rgrosse/courses/csc321_2018/) [CSC 321 Winter 2018][DL]
3
Computer Vision
1.[toronto: CSC420: Intro to Image Understanding](http://www.teach.cs.toronto.edu/~csc420h/fall/) [Fall 2017][CV]
4
Machine Learning
[Stanford: CS229 Machine Learning](http://cs229.stanford.edu/) [Autumn 2017][ML]
[University of Notre Dame: Statistical Computing for Scientists and Engineers](https://www.zabaras.com/statisticalcomputing) [Fall 2017][SL]
[CMU: Statistical Machine Learning](http://www.stat.cmu.edu/~ryantibs/statml/) [Spring 2017][ML]
[Carnegie Mellon University:10-701/15-781 Machine Learning](http://www.cs.cmu.edu/~tom/10701_sp11/) [Spring 2011][ML]
[toronto: CSC411 introduction to Machine Learning](http://www.cs.toronto.edu/~jlucas/teaching/csc411/) [Fall 2017][ML]
[MIT: 6.S099 Artificial General Intelligence](https://agi.mit.edu/) [2018]
[MIT 6.S094: Deep Learning for Self-Driving Cars](https://selfdrivingcars.mit.edu/) [2018]
5
Reinforcement Learning
[Berkeley: CS 294 Deep Reinforcement Learning](http://rll.berkeley.edu/deeprlcourse/?utm_source=qq&utm_medium=social) [Fall 2017][RL]
[CMU: 10703 Deep RL and Control](http://www.cs.cmu.edu/~rsalakhu/10703/) [Fall 2018][RL]
[Stanford: CS234: Reinforcement Learning](http://web.stanford.edu/class/cs234/index.html?utm_source=wechat_session&utm_medium=social) [Winter 2018][RL]
参考
深度学习名校课程大全: https://zhuanlan.zhihu.com/p/33580103
Awesome Deep Learning: https://github.com/xiaohu2015/awesome-deep-learning
机器学习算法全栈工程师
一个用心的公众号
进群,学习,得帮助
你的关注,我们的热度,
我们一定给你学习最大的帮助