独家 | 增强数据库管理:一份简单的综述
作者:Mayuresh Joshi 翻译:王可汗 校对:赵茹萱 本文约1300字,建议阅读6分钟
本文教你如何利用LSTM网络预测股价走势,并对开盘和收盘价进行可视化。
元数据管理和组织:标签、分类和搜索数据更加容易。自动收集、组织、编目和合并技术和业务元数据,包括结构化数据和非结构化数据。利用人工智能识别系统依赖关系、数据流和异常。
数据质量:识别和解决数据质量问题。基于现有数据集提出数据质量规则并运行。识别模式和异常,并模拟相关性。根据预测值和手动数据,清理建议数据清理的操作。
主数据管理:识别和评估潜在的主数据。自动生成主数据模型,映射数据实体。基于使用模式、信任分数等,建议匹配和合并的操作,以建立单一的真实来源。
译者简介
王可汗,清华大学机械工程系直博生在读。曾经有着物理专业的知识背景,研究生期间对数据科学产生浓厚兴趣,对机器学习AI充满好奇。期待着在科研道路上,人工智能与机械工程、计算物理碰撞出别样的火花。希望结交朋友分享更多数据科学的故事,用数据科学的思维看待世界。
翻译组招募信息
工作内容:需要一颗细致的心,将选取好的外文文章翻译成流畅的中文。如果你是数据科学/统计学/计算机类的留学生,或在海外从事相关工作,或对自己外语水平有信心的朋友欢迎加入翻译小组。
你能得到:定期的翻译培训提高志愿者的翻译水平,提高对于数据科学前沿的认知,海外的朋友可以和国内技术应用发展保持联系,THU数据派产学研的背景为志愿者带来好的发展机遇。
其他福利:来自于名企的数据科学工作者,北大清华以及海外等名校学生他们都将成为你在翻译小组的伙伴。
点击文末“阅读原文”加入数据派团队~
转载须知
如需转载,请在开篇显著位置注明作者和出处(转自:数据派ID:DatapiTHU),并在文章结尾放置数据派醒目二维码。有原创标识文章,请发送【文章名称-待授权公众号名称及ID】至联系邮箱,申请白名单授权并按要求编辑。
发布后请将链接反馈至联系邮箱(见下方)。未经许可的转载以及改编者,我们将依法追究其法律责任。
点击“阅读原文”查看原文