Redis性能优化方案总结

共 5838字,需浏览 12分钟

 ·

2021-04-29 17:34

点击上方蓝色字体,选择“标星公众号”

优质文章,第一时间送达

76套java从入门到精通实战课程分享

一、优化的一些建议

1、尽量使用短的key

当然在精简的同时,不要为了key的“见名知意”。对于value有些也可精简,比如性别使用0、1。


2、避免使用keys *

  keys *, 这个命令是阻塞的,即操作执行期间,其它任何命令在你的实例中都无法执行。当redis中key数据量小时到无所谓,数据量大就很糟糕了。所以我们应该避免去使用这个命令。可以去使用SCAN,来代替。


3、在存到Redis之前先把你的数据压缩下

redis为每种数据类型都提供了两种内部编码方式,在不同的情况下redis会自动调整合适的编码方式。


4、设置key有效期

我们应该尽可能的利用key有效期。比如一些临时数据(短信校验码),过了有效期Redis就会自动为你清除!


5、选择回收策略(maxmemory-policy)

当Redis的实例空间被填满了之后,将会尝试回收一部分key。根据你的使用方式,强烈建议使用 volatile-lru(默认) 策略——前提是你对key已经设置了超时。但如果你运行的是一些类似于 cache 的东西,并且没有对 key 设置超时机制,可以考虑使用 allkeys-lru 回收机制,具体讲解查看 。maxmemory-samples 3 是说每次进行淘汰的时候 会随机抽取3个key 从里面淘汰最不经常使用的(默认选项)。

maxmemory-policy 六种方式 :

volatile-lru:只对设置了过期时间的key进行LRU(默认值)

allkeys-lru : 是从所有key里 删除 不经常使用的key

volatile-random:随机删除即将过期key

allkeys-random:随机删除

volatile-ttl : 删除即将过期的

noeviction : 永不过期,返回错误


6、使用bit位级别操作和byte字节级别操作来减少不必要的内存使用

bit位级别操作:GETRANGE, SETRANGE, GETBIT and SETBIT

byte字节级别操作:GETRANGE and SETRANGE


7、尽可能地使用hashes哈希存储


8、当业务场景不需要数据持久化时,关闭所有的持久化方式可以获得最佳的性能

  数据持久化时需要在持久化和延迟/性能之间做相应的权衡.


9、想要一次添加多条数据的时候可以使用管道


10、限制redis的内存大小(64位系统不限制内存,32位系统默认最多使用3GB内存) 

 数据量不可预估,并且内存也有限的话,尽量限制下redis使用的内存大小,这样可以避免redis使用swap分区或者出现OOM错误。(使用swap分区,性能较低,如果限制了内存,当到达指定内存之后就不能添加数据了,否则会报OOM错误。可以设置maxmemory-policy,内存不足时删除数据)


11、SLOWLOG [get/reset/len]

slowlog-log-slower-than 它决定要对执行时间大于多少微秒(microsecond,1秒 = 1,000,000 微秒)的命令进行记录。

slowlog-max-len 它决定 slowlog 最多能保存多少条日志,当发现redis性能下降的时候可以查看下是哪些命令导致的。

二、管道测试

redis的管道功能在命令行中没有,但是redis是支持管道的,在java的客户端(jedis)中是可以使用的:


示例代码:

//注:具体耗时,和自身电脑有关(博主是在虚拟机中运行的数据)

/**

 * 不使用管道初始化1W条数据

 * 耗时:3079毫秒

 * @throws Exception

 */

@Test

public void NOTUsePipeline() throws Exception {

    Jedis jedis = JedisUtil.getJedis();

    long start_time = System.currentTimeMillis();

    for (int i = 0; i < 10000; i++) {

        jedis.set("aa_"+i, i+"");

    }

    System.out.println(System.currentTimeMillis()-start_time);

}

 

/**

 * 使用管道初始化1W条数据

 * 耗时:255毫秒

 * @throws Exception

 */

@Test

public void usePipeline() throws Exception {

    Jedis jedis = JedisUtil.getJedis();

 

    long start_time = System.currentTimeMillis();

    Pipeline pipelined = jedis.pipelined();

    for (int i = 0; i < 10000; i++) {

        pipelined.set("cc_"+i, i+"");

    }

    pipelined.sync();//执行管道中的命令

    System.out.println(System.currentTimeMillis()-start_time);

}


hash的应用

 示例:


COC中每个客户会对应上千个标签,每个客户就是一个对象,我们如何存储它?

这里写图片描述

存储结构比较:


    序列化对象:要求在redis存储前对象进行序列化操作,每次取出后还要执行反序列化操作,开销太大;如果只想取对象的某一个值,都需要将整个对象取出,还要解决并发、数据一致性、加锁等复杂问题。

    K-V模式: phone字段冗余;

    HASHMAP: phone字段只出现一次,避免数据冗余。

 

Instagram内存优化

Instagram可能大家都已熟悉,当前火热的拍照App,月活跃用户3亿。四年前Instagram所存图片3亿多时需要解决一个问题:想知道每一张照片的作者是谁(通过图片ID反查用户UID),并且要求查询速度要相当的块,如果把它放到内存中使用String结构做key-value:

HSET "mediabucket:1155" "1155315" "939"

HGET "mediabucket:1155" "1155315"

"939"

测试:1百万数据会用掉70MB内存,3亿张照片就会用掉21GB的内存。当时(四年前)最好是一台EC2的 high-memory 机型就能存储(17GB或者34GB的,68GB的太浪费了),想把它放到16G机型中还是不行的。


Instagram的开发者向Redis的开发者之一Pieter Noordhuis询问优化方案,得到的回复是使用Hash结构。具体的做法就是将数据分段,每一段使用一个Hash结构存储.

由于Hash结构会在单个Hash元素在不足一定数量时进行压缩存储,所以可以大量节约内存。这一点在上面的String结构里是不存在的。而这个一定数量是由配置文件中的hash-zipmap-max-entries参数来控制的。经过实验,将hash-zipmap-max-entries设置为1000时,性能比较好,超过1000后HSET命令就会导致CPU消耗变得非常大。

HSET "mediabucket:1155" "1155315" "939"

HGET "mediabucket:1155" "1155315"

"939"

测试:1百万消耗16MB的内存。总内存使用也降到了5GB。当然我们还可以优化,去掉mediabucket:key长度减少了12个字节。

HSET "1155" "315" "939"

HGET "1155" "315"

"939"


三、优化案例

1、修改linux中TCP监听的最大容纳数量

WARNING: The TCP backlog setting of 511 cannot be enforced because

/proc/sys/net/core/somaxconn is set to the lower value of 128.

在高并发环境下你需要一个高backlog值来避免慢客户端连接问题。注意Linux内核默默地将这个值减小到/proc/sys/net/core/somaxconn的值,所以需要确认增大somaxconn和tcp_max_syn_backlog两个值来达到想要的效果。

echo 511 > /proc/sys/net/core/somaxconn

注意:这个参数并不是限制redis的最大链接数。如果想限制redis的最大连接数需要修改maxclients,默认最大连接数为10000


2、修改linux内核内存分配策略

错误日志:WARNING overcommit_memory is set to 0! Background save may fail under low memory condition.

To fix this issue add 'vm.overcommit_memory = 1' to /etc/sysctl.conf and then reboot or

run the command 'sysctl vm.overcommit_memory=1

   redis在备份数据的时候,会fork出一个子进程,理论上child进程所占用的内存和parent是一样的,比如parent占用的内存为8G,这个时候也要同样分配8G的内存给child,如果内存无法负担,往往会造成redis服务器的down机或者IO负载过高,效率下降。所以内存分配策略应该设置为 1(表示内核允许分配所有的物理内存,而不管当前的内存状态如何)。

内存分配策略有三种

可选值:0、1、2。

0, 表示内核将检查是否有足够的可用内存供应用进程使用;如果有足够的可用内存,内存申请允许;否则,内存申请失败,并把错误返回给应用进程。

1, 不管需要多少内存,都允许申请。

2, 只允许分配物理内存和交换内存的大小(交换内存一般是物理内存的一半)。

3、关闭Transparent Huge Pages(THP)


THP会造成内存锁影响redis性能,建议关闭

Transparent HugePages :用来提高内存管理的性能

Transparent Huge Pages在32位的RHEL 6中是不支持的

执行命令 echo never > /sys/kernel/mm/transparent_hugepage/enabled

把这条命令添加到这个文件中/etc/rc.local


————————————————

版权声明:本文为CSDN博主「塞冷鸿飞急」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。

原文链接:

https://blog.csdn.net/weixin_44098139/article/details/88972180





锋哥最新SpringCloud分布式电商秒杀课程发布

👇👇👇

👆长按上方微信二维码 2 秒





感谢点赞支持下哈 

浏览 81
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报
评论
图片
表情
推荐
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报