浅谈Golang两种线程安全的map

云加社区

共 12273字,需浏览 25分钟

 ·

2021-12-23 10:17


导语 | 在召回排序业务中,由于上游请求量较大,对下游存储服务造成较大压力,业务场景要求高性能和非强一致性,所以我采用golang并发安全k-v缓存开源库进行性能优化,以下是对其调研、对比分析。如有错误,请多指正。


一、Golang map


(一)并发读写测试


在Golang中原生map在并发场景下,同时读写是线程不安全的,无论key是否一样。以下是测试代码:


package main
import "time"
func main() { testMapReadWriteDiffKey()}
func testMapReadWriteDiffKey() { m := make(map[int]int) go func() { for { m[100] = 100 } }() go func() { for { _ = m[12] } }() select {}}


如上图的demo,并发读写map的不同key,运行结果如下:



map读的时候会检查hashWriting标志,如果有这个标志,就会报并发错误。写的时候会设置这个标志:h.flags|=hashWriting.设置完之后会取消这个标记。map的并发问题不是那么容易被发现, 可以利用-race参数来检查。map并发读写冲突检测机制不是本文的重点,不过感兴趣的同学可以通过以下链接深入了解下。


相关文章分析:
https://medium.com/a-journey-with-go/go-concurrency-access-with-maps-part-iii-8c0a0e4eb27e


编译时的选项-race,为何能分析出并发问题,详见:


go官方博客:https://go.dev/blog/race-detector


文章分析:
https://medium.com/@blanchon.vincent/go-race-detector-with-threadsanitizer-8e497f9e42db


视频讲解:

https://www.youtube.com/watch?v=5erqWdlhQLA



(二)map+读写锁


在官方库sync.map没出来前,Go maps in action推荐的做法是使用map+RWLock,比如定义一个匿名struct变量,其包含map、RWLock,如下所示:


var counter = struct{    sync.RWMutex    m map[string]int}{m: make(map[string]int)}


可以这样从counter中读数据


counter.RLock()n := counter.m["some_key"]counter.RUnlock()fmt.Println("some_key:", n)


可以这样往counter中写数据


counter.Lock()counter.m["some_key"]++counter.Unlock()


那Go 1.9版本实现的sync.map和上面的这种实现方式有什么不同?它适用于哪些场景呢?它在哪些方面做了性能优化呢?



二、sync.map


sync.map是用读写分离实现的,其思想是空间换时间。和map+RWLock的实现方式相比,它做了一些优化:可以无锁访问read map,而且会优先操作read map,倘若只操作read map就可以满足要求(增删改查遍历),那就不用去操作write map(它的读写都要加锁),所以在某些特定场景中它发生锁竞争的频率会远远小于map+RWLock的实现方式。


接下来着重介绍下sync.map的源码,以了解其运作原理。


sync.map源码:
https://github.com/golang/go/blob/master/src/sync/map.go


(一)变量介绍


  • 结构体Map


type Map struct { // 互斥锁mu,操作dirty需先获取mu mu Mutex 
// read是只读的数据结构,访问它无须加锁,sync.map的所有操作都优先读read // read中存储结构体readOnly,readOnly中存着真实数据---entry(详见1.3),read是dirty的子集 // read中可能会存在脏数据:即entry被标记为已删除(详见1.3)read atomic.Value // readOnly
// dirty是可以同时读写的数据结构,访问它要加锁,新添加的key都会先放到dirty中 // dirty == nil的情况:1.被初始化 2.提升为read后,但它不能一直为nil,否则read和dirty会数据不一致。 // 当有新key来时,会用read中的数据 (不是read中的全部数据,而是未被标记为已删除的数据,详见3.2)填充dirty // dirty != nil时它存着sync.map的全部数据(包括read中未被标记为已删除的数据和新来的数据) dirty map[interface{}]*entry
// 统计访问read没有未命中然后穿透访问dirty的次数 // 若miss等于dirty的长度,dirty会提升成read,提升后可以增加read的命中率,减少加锁访问dirty的次数 misses int}


  • 结构体readOnly


type readOnly struct {  m       map[interface{}]*entry  amended bool }


第一点的结构read存的就是readOnly,m是一个map,key是interface,value是指针entry,其指向真实数据的地址,amended等于true代表dirty中有readOnly.m中不存在的entry。


  • 结构体entry


type entry struct {       // p == nil:entry已从readOnly中删除但存在于dirty中       // p == expunged:entry已从Map中删除且不在dirty中       // p == 其他值:entry为正常值       p unsafe.Pointer // *interface{}}


entry中的指针p指向真正的value所在的地址,dirty和readOnly.m存的值类型就是*entry。这里的nil和expunged有什么作用呢?只要nil不可以吗?对于这些问题后面会一一解读。



(二)函数介绍


下面介绍下sync.Map的四个方法:LoadStoreDeleteRange


  • Load方法


  • 图解



  • 源码分析


Load方法用来加载sync.Map中的值,入参是key,返回值是对应的value以及value存在与否


func (m *Map) Load(key interface{}) (value interface{}, ok bool) {    // 从m.read中换出readOnly,然后从里面找key,这个过程不加锁    read, _ := m.read.Load().(readOnly)    e, ok := read.m[key]
// readOnly中不存在此key但Map.dirty可能存在 if !ok && read.amended { // 加锁访问Map.dirty m.mu.Lock() // 双重检测:若加锁前Map.dirty被替换为readonly,则前面m.read.Load().(readOnly)无效,需 // 要再次检查 read, _ = m.read.Load().(readOnly) e, ok = read.m[key] // read.m没有此key && dirty里有可能有(dirty中有read.m没有的数据) if !ok && read.amended { // 从dirty中获取key对应的entry e, ok = m.dirty[key] // 无论Map.dirty中是否有这个key,miss都加一,若miss大小等于dirty的长度,dirty中的元素会被 // 加到Map.read中 m.missLocked() } m.mu.Unlock() } if !ok { return nil, false } // 若entry.p被删除(等于nil或expunged)返回nil和不存在(false),否则返回对应的值和存在(true) return e.load()}


Map.dirty是如何提升为Map.read的呢?让我们来看下missLocked方法


func (m *Map) missLocked() {        // 访问一次Map.dirty,misses就要加一  m.misses++  if m.misses < len(m.dirty) {    return  }        // 当misses等于dirty的长度,m.dirty提升为readOnly,amended被默认赋值成false  m.read.Store(readOnly{m: m.dirty})  m.dirty = nil  m.misses = 0}


小结


  • Load方法会优先无锁访问readOnly,未命中后如果Map.dirty中可能存在这个数据就会加锁访问Map.dirty。


  • Load方法如果访问readOnly中不存在但dirty中存在的key,就要加锁访问Map.dirty从而带来额外开销。



  • Store方法


  • 图解



  • 源码解析


Store方法往Map里添加新的key和value或者更新value


func (m *Map) Store(key, value interface{}) {    // 把m.read转成结构体readOnly    read, _ := m.read.Load().(readOnly)    // 若key在readOnly.m中且entry.p不为expunged(没有标记成已删除)即key同时存在于readOnly.m和dirty    // ,用CAS技术更新value 【注】:e.tryStore在entry.p == expunged时会立刻返回false,否则用CAS    // 尝试更新对应的value, 更新成功会返回true    if e, ok := read.m[key]; ok && e.tryStore(&value) {        return    }    // key不存在于readOnly.m或者entry.p==expunged(entry被标记为已删除),加锁访问dirty    m.mu.Lock()    // 双重检测:若加锁前Map.dirty被提升为readOnly,则前面的read.m[key]可能无效,所以需要再次检测key是    // 否存在于readOnly中    read, _ = m.read.Load().(readOnly)    // 若key在于readOnly.m中    if e, ok := read.m[key]; ok {        // entry.p之前的状态是expunged,把它置为nil        if e.unexpungeLocked() {            // 之前dirty中没有此key,所以往dirty中添加此key              m.dirty[key] = e        }        // 更新(把value的地址原子赋值给指针entry.p)        e.storeLocked(&value)        // 若key在dirty中    } else if e, ok := m.dirty[key]; ok {         // 更新(把value的地址原子赋值给指针entry.p)        e.storeLocked(&value)      // 来了个新key    } else {         // dirty中没有新数据,往dirty中添加第一个新key        if !read.amended {              // 把readOnly中未标记为删除的数据拷贝到dirty中            m.dirtyLocked()              // amended:true,因为现在dirty有readOnly中没有的key            m.read.Store(readOnly{m: read.m, amended: true})        }        // 把这个新的entry加到dirty中        m.dirty[key] = newEntry(value)    }    m.mu.Unlock()}


func (e *entry) tryStore(i *interface{}) bool {  for {    p := atomic.LoadPointer(&e.p)    if p == expunged {      return false    }    if atomic.CompareAndSwapPointer(&e.p, p, unsafe.Pointer(i)) {      return true    }  }}


func (e *entry) unexpungeLocked() (wasExpunged bool) {  return atomic.CompareAndSwapPointer(&e.p, expunged, nil)}


func (m *Map) dirtyLocked() {  if m.dirty != nil {  // 只要调用dirtyLocked,此时dirty肯定等于nil    return  }        // dirty为nil时,把readOnly中没被标记成删除的entry添加到dirty  read, _ := m.read.Load().(readOnly)  m.dirty = make(map[interface{}]*entry, len(read.m))  for k, e := range read.m {                // tryExpungeLocked函数在entry未被删除时【e.p!=expunged&&e.p!=nil】返回false,在                // e.p==nil时会将其置为expunged并返回true    if !e.tryExpungeLocked() {        m.dirty[k] = e  // entry没被删除,把它添加到dirty中    }  }}


小结


  • Store方法优先无锁访问readOnly,未命中会加锁访问dirty。


  • Store方法中的双重检测机制在下面的Load、Delete、Range方法中都会用到,原因是:加锁前Map.dirty可能已被提升为Map.read,所以加锁后还要再次检查key是否存在于Map.read中。


  • dirtyLocked方法在dirty为nil(刚被提升成readOnly或者Map初始化时)会从readOnly中拷贝数据,如果readOnly中数据量很大,可能偶尔会出现性能抖动


  • sync.map不适合用于频繁插入新key-value的场景,因为此操作会频繁加锁访问dirty会导致性能下降。更新操作在key存在于readOnly中且值没有被标记为删除(expunged)的场景下会用无锁操作CAS进行性能优化,否则也会加锁访问dirty。



  • Delete方法


  • 图解



  • 源码解析


Delete方法把key从Map中删掉,返回被删除的值和是否删除成功,它底层调用的是LoadAndDelete


func (m *Map) LoadAndDelete(key interface{}) (value interface{}, loaded bool) {        // 从m.read中换出readOnly,然后从里面找key,此过程不加锁  read, _ := m.read.Load().(readOnly)  e, ok := read.m[key]
// readOnly不存在此key,但dirty中可能存在 if !ok && read.amended { // 加锁访问dirty m.mu.Lock() // 双重检测:若加锁前Map.dirty被替换为readonly,则前面m.read.Load().(readOnly)无 // 效,需要再次检查 read, _ = m.read.Load().(readOnly) e, ok = read.m[key] // readOnly不存在此key,但是dirty中可能存在 if !ok && read.amended { e, ok = m.dirty[key] delete(m.dirty, key) m.missLocked() } m.mu.Unlock() } if ok { // 如果entry.p不为nil或者expunged,则把entry.p软删除(标记为nil) return e.delete() } return nil, false}


func (e *entry) delete() (value interface{}, ok bool) {  for {       p := atomic.LoadPointer(&e.p)    if p == nil || p == expunged {      return nil, false    }                // e.p是真实值,把它置为nil    if atomic.CompareAndSwapPointer(&e.p, p, nil) {      return *(*interface{})(p), true    }  }}


小结


  • 删除readOnly中存在的key,可以不用加锁。


  • 如果删除readOnly中不存在的或者Map中不存在的key,都需要加锁。



  • Range方法


  • 图解



  • 源码解析


Range方法可遍历Map,参数是个函数(入参:key和value,返回值:是否停止遍历Range方法)


func (m *Map) Range(f func(key, value interface{}) bool) {      read, _ := m.read.Load().(readOnly)      if read.amended { // dirty存在readOnly中不存在的元素          // 加锁访问dirty         m.mu.Lock()          // 再次检测read.amended,因为加锁前它可能已由true变成false         read, _ = m.read.Load().(readOnly)          if read.amended {              // readOnly.amended被默认赋值成false              read = readOnly{m: m.dirty}              m.read.Store(read)              m.dirty = nil              m.misses = 0         }         m.mu.Unlock()     }     // 遍历readOnly.m    for k, e := range read.m {          v, ok := e.load()          if !ok {             continue          }          if !f(k, v) {              break          }     } }


小结


  • Range方法Map的全部key都存在于readOnly中时,是无锁遍历的,性能最高。


  • Range方法在readOnly只存在Map中的部分key时,会一次性加锁拷贝dirty的元素到readOnly,减少多次加锁访问dirty中的数据。



(三)sync.map总结


  • 使用场景


sync.Map更适合读多更新多而插入新值少的场景(appendOnly模式,尤其是key存一次,多次读而且不删除的情况),因为在key存在的情况下读写删操作可以不用加锁直接访问readOnly不适合反复插入与读取新值的场景,因为这种场景会频繁操作dirty,需要频繁加锁和更新read【此场景github开源库orcaman/concurrent-map更合适】



  • 设计点:expunged


entry.p取值有3种,nilexpunged指向真实值。那expunged出现在什么时候呢?为什么要有expunged的设计呢?它有什么作用呢?


  • 什么时候expunged会出现呢?


当用Store方法插入新key时,会加锁访问dirty,并把readOnly中的未被标记为删除的所有entry指针复制到dirty,此时之前被Delete方法标记为软删除的entry(entry.p被置为nil)都变为expunged,那这些被标记为expunged的entry将不会出现在dirty中。


  • 反向思维,如果没有expunged,只有nil会出现什么结果呢?


  • 直接删掉entry==nil的元素,而不是置为expunged:在用Store方法插入新key时,readOnly数据拷贝到dirty时直接把为ni的entry删掉。但这要对readOnly加锁,sync.map设计理念是读写分离,所以访问readOnly不能加锁


  • 不删除entry==nil的元素,全部拷贝:在用Store方法插入新key时,readOnly中entry.p为nil的数据全部拷贝到dirty中。那么在dirty提升为readOnly后这些已被删除的脏数据仍会保留,也就是说它们会永远得不到清除,占用的内存会越来越大


  • 不拷贝entry.p==nil的元素:在用Store方法插入新key时,不把readOnly中entry.p为nil的数据拷贝到dirty中,那在用Store更新值时,就会出现readOnly和dirty不同步的状态,即readOnly中存在dirty中不存在的key,那dirty提升为readOnly时会出现数据丢失的问题



(四)sync.map的其他问题


为什么sync.map不实现len方法?个人觉得还是成本和收益的权衡。


  • 实现len方法要统计readOnly和dirty的数据量,势必会引入锁竞争,导致性能下降,还会额外增加代码实现复杂度。


  • 对sync.map的并发操作导致其数据量可能变化很快,len方法的统计结果参考价值不大。



三、orcanman/concurrent-map


orcaman/concurrent-map的适用场景是:反复插入与读取新值,其实现思路是:对go原生map进行分片加锁,降低锁粒度,从而达到最少的锁等待时间(锁冲突)。


concurrent-map源码地址:
https://github.com/orcaman/concurrent-map



它的实现比较简单,截取部分源码如下:


(一)数据结构


// SHARD_COUNT 分片大小var SHARD_COUNT = 32
type ConcurrentMap []*ConcurrentMapShared
// ConcurrentMapShared 分片的并发maptype ConcurrentMapShared struct { items map[string]interface{} sync.RWMutex // 访问内部map都需要先获取读写锁}
// New 创建一个concurrent map.func New() ConcurrentMap { m := make(ConcurrentMap, SHARD_COUNT) for i := 0; i < SHARD_COUNT; i++ { m[i] = &ConcurrentMapShared{items: make(map[string]interface{})} } return m}


二)函数介绍 


  • GET方法


// 先hash拿到key对应的分区号,然后加锁,读取值,最后释放锁和返回func (m ConcurrentMap) Get(key string) (interface{}, bool) {  // Get shard  shard := m.GetShard(key)  shard.RLock()  // Get item from shard.  val, ok := shard.items[key]  shard.RUnlock()  return val, ok}


  •  SET方法


// 先hash拿到key对应的分区号,然后加锁,设置新值,最后释放锁func (m ConcurrentMap) Set(key string, value interface{}) {  // Get map shard.  shard := m.GetShard(key)  shard.Lock()  shard.items[key] = value  shard.Unlock()}


  • Remove方法


// 先hash拿到key对应的分区号,然后加锁,删除key,最后释放锁func (m ConcurrentMap) Remove(key string) {  // Try to get shard.  shard := m.GetShard(key)  shard.Lock()  delete(shard.items, key)  shard.Unlock()}


  • Count方法


// 分别拿到每个分片map中的元素数量,然后汇总后返回func (m ConcurrentMap) Count() int {  count := 0  for i := 0; i < SHARD_COUNT; i++ {    shard := m[i]    shard.RLock()    count += len(shard.items)    shard.RUnlock()  }  return count}


  • Upsert方法


// 先hash拿到key对应的分区号,然后加锁,如果key存在就更新其value,否则插入新的k-v,释放锁并返回func (m ConcurrentMap) Upsert(key string, value interface{}, cb UpsertCb) (res interface{}) {  shard := m.GetShard(key)  shard.Lock()  v, ok := shard.items[key]  res = cb(ok, v, value)  shard.items[key] = res  shard.Unlock()  return res}



四、后续


当然在其他业务场景中,我们可能更需要的是本地kv缓存组件库并要求它们支持键过期时间设置、淘汰策略、存储优化、gc优化等。这时候可能我们就需要去了解freecache、gocache、fastcache、bigcache、groupcache等组件库了。


参考资料

1.Golang fatal error: concurrent map read and map write.

2.sync: add Map.Len method?

3.concurrent map. 



 作者简介


clancyliang

腾讯后台开发工程师

腾讯后台开发工程师,个人微信公众号:小梁编程汇,擅长的编程语言有:golang、c、c++、java、python,擅长的领域是后台技术,诸如:计网:tcp/ip相关等、操作系统、算法(曾拿过ACM ICPC亚洲区域赛铜牌)、分布式缓存、分布式事务等相关后台技术。



 推荐阅读


一探究竟!Whistle拦截HTTPS是如何实现的?

它来了,关于Golang并发编程的超详细教程!

有的放矢,远程操控中实时音视频的优化之道

TVP三周年:聚力成长,共赴新篇!




浏览 33
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报
评论
图片
表情
推荐
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报