统治世界的 10 大算法,你知道几个?
共 4831字,需浏览 10分钟
·
2021-06-19 15:19
点击上方“小白学视觉”,选择加"星标"或“置顶”
重磅干货,第一时间送达
本文转自|视觉算法
一篇有趣的文章《统治世界的十大算法》中,作者George Dvorsky试图解释算法之于当今世界的重要性,以及哪些算法对人类文明最为重要。
1 排序算法
所谓排序,就是使一串记录,按照其中的某个或某些关键字的大小,递增或递减的排列起来的操作。排序算法,就是如何使得记录按照要求排列的方法。排序算法在很多领域得到相当地重视,尤其是在大量数据的处理方面。一个优秀的算法可以节省大量的资源。
稳定的
冒泡排序(bubble sort) — O(n^2)
鸡尾酒排序(Cocktail sort,双向的冒泡排序) — O(n^2)
插入排序(insertion sort)— O(n^2)
桶排序(bucket sort)— O(n); 需要 O(k) 额外空间
计数排序(counting sort) — O(n+k); 需要 O(n+k) 额外空间
合并排序(merge sort)— O(nlog n);需要 O(n) 额外空间
原地合并排序— O(n^2)
二叉排序树排序 (Binary tree sort) — O(nlog n)期望时间;O(n^2)最坏时间;需要 O(n) 额外空间
鸽巢排序(Pigeonhole sort)— O(n+k); 需要 O(k) 额外空间
基数排序(radix sort)— O(n·k); 需要 O(n) 额外空间
Gnome 排序— O(n^2)
图书馆排序— O(nlog n) withhigh probability,需要(1+ε)n额外空间
选择排序(selection sort)— O(n^2)
希尔排序(shell sort)— O(nlog n) 如果使用最佳的现在版本
组合排序— O(nlog n)
堆排序(heapsort)— O(nlog n)
平滑排序— O(nlog n)
快速排序(quicksort)— O(nlog n) 期望时间,O(n^2) 最坏情况;对于大的、乱数列表一般相信是最快的已知排序
Introsort—O(nlog n)
Patience sorting— O(nlog n+k) 最坏情况时间,需要额外的 O(n+ k) 空间,也需要找到最长的递增子串行(longest increasing subsequence)
Bogo排序— O(n× n!) 期望时间,无穷的最坏情况。
Stupid sort— O(n^3); 递归版本需要 O(n^2)额外存储器
珠排序(Bead sort) — O(n) or O(√n),但需要特别的硬件
Pancake sorting— O(n),但需要特别的硬件
stooge sort——O(n^2.7)很漂亮但是很耗时
2 傅立叶变换与快速傅立叶变换
3 Dijkstra 算法
4 RSA算法变换
5 安全哈希算法
6 整数因式分解
7 链接分析
8 比例积分微分算法
9 数据压缩算法
10 随机数生成
交流群
欢迎加入公众号读者群一起和同行交流,目前有SLAM、三维视觉、传感器、自动驾驶、计算摄影、检测、分割、识别、医学影像、GAN、算法竞赛等微信群(以后会逐渐细分),请扫描下面微信号加群,备注:”昵称+学校/公司+研究方向“,例如:”张三 + 上海交大 + 视觉SLAM“。请按照格式备注,否则不予通过。添加成功后会根据研究方向邀请进入相关微信群。请勿在群内发送广告,否则会请出群,谢谢理解~