一切模型皆可联邦化:高斯朴素贝叶斯代码示例
共 5199字,需浏览 11分钟
·
2024-06-18 17:00
来源:DeepHub IMBA 本文约1500字,建议阅读5分钟
本文将以高斯朴素贝叶斯分类器为例创建一个联邦学习系统。
高斯朴素贝叶斯简介
联邦学习工作流程
-
数据分配:将训练数据分配给多个客户端。 -
本地训练:每个客户端训练一个本地高斯NB模型。 -
参数聚合:服务器从客户端聚合模型参数。 -
全局模型评估:服务器在测试数据上评估聚合模型。
代码示例
import numpy as np
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.naive_bayes import GaussianNB
from sklearn.metrics import accuracy_score, classification_report
# Load the Iris dataset
iris = load_iris()
X = iris.data
y = iris.target
# Split the data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42
# Number of clients
num_clients = 5
# Split the training data among the clients
client_data = np.array_split(np.column_stack((X_train, y_train)), num_clients)
# Function to train a local model and return its parameters
def train_local_model(data):
X_local = data[:, :-1]
y_local = data[:, -1]
model = GaussianNB()
model.fit(X_local, y_local)
return model.theta_, model.var_, model.class_prior_, model.class_count_
# Train local models and collect their parameters
local_params = [train_local_model(data) for data in client_data]
# Aggregate the local model parameters
def aggregate_parameters(local_params):
num_features = local_params[0][0].shape[1]
num_classes = len(local_params[0][2])
# Initialize global parameters
global_theta = np.zeros((num_classes, num_features))
global_sigma = np.zeros((num_classes, num_features))
global_class_prior = np.zeros(num_classes)
global_class_count = np.zeros(num_classes)
# Sum the parameters from all clients
for theta, sigma, class_prior, class_count in local_params:
global_theta += theta * class_count[:, np.newaxis]
global_sigma += sigma * class_count[:, np.newaxis]
global_class_prior += class_prior * class_count
global_class_count += class_count
# Normalize to get the means and variances
global_theta /= global_class_count[:, np.newaxis]
global_sigma /= global_class_count[:, np.newaxis]
global_class_prior = global_class_count / global_class_count.sum()
return global_theta, global_sigma, global_class_prior
# Aggregate the model parameters
global_sigma, global_class_prior = aggregate_parameters(local_params)
# Create a global model with aggregated parameters
global_model = GaussianNB()
global_model.theta_ = global_theta
global_model.var_ = global_sigma
global_model.class_prior_ = global_class_prior
global_model.classes_ = np.arange(len(global_class_prior))
# Evaluate the global model
y_pred = global_model.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
report = classification_report(y_test, y_pred, target_names=iris.target_names)
print("Accuracy:", accuracy)
print("Classification Report:\n", report)
总结
评论