基于OpenCV的图像阴影去除
极市导读
如何手动删除阴影?本文详解通过Numpy和OpenCV的基本函数,无需仍无应用程序即可实现图像阴影去除,附代码详解。>>加入极市CV技术交流群,走在计算机视觉的最前沿
目标检测图像数据集:15个目标检测开源数据集汇总
我们经常需要通过扫描将纸上的全部内容转换为图像。有很多在线工具可以提高图像的亮度,或者消除图像中的阴影。但是我们可以手动删除阴影吗?当然可以,我们只需要将图像加载到相应的代码中,无需任何应用程序即可在几秒钟内获得输出。这个代码可以通过Numpy和OpenCV基本函数来实现。为了说明该过程,使用了以下图像进行操作。
1.图像中有一个非常明显的阴影需要删除。首先当然是将必要的软件包导入环境。
import cv2
import numpy as np
import matplotlib.pyplot as plt
2.删除阴影时,有两件事要注意。由于图像是灰度图像,如果图像背景较浅且对象较暗,则必须先执行最大滤波,然后再执行最小滤波。如果图像背景较暗且物体较亮,我们可以先执行最小滤波,然后再进行最大滤波。那么,最大过滤和最小过滤到底是什么?
3.最大滤波:让我们假设我们有一定大小的图像I。我们编写的算法应该逐个遍历I的像素,并且对于每个像素(x,y),它必须找到该像素周围的邻域(大小为N x N的窗口)中的最大灰度值,并进行写入A中相应像素位置(x,y)的最大灰度值。所得图像A称为输入图像I的最大滤波图像。现在让我们通过代码来实现这个概念。
max_filtering()函数接受输入图像和窗口大小N。
它最初在输入数组周围创建一个“墙”(带有-1的填充),当我们遍历边缘像素时会有所帮助。
然后,我们创建一个“ temp”变量,将计算出的最大值复制到其中。
然后,我们遍历该数组并围绕大小为N x N的当前像素创建一个窗口。
然后,我们使用“ amax()”函数在该窗口中计算最大值,并将该值写入temp数组。
我们将该临时数组复制到主数组A中,并将其作为输出返回。
A是输入I的最大滤波图像。
def max_filtering(N, I_temp):
wall = np.full((I_temp.shape[0]+(N//2)*2, I_temp.shape[1]+(N//2)*2), -1)
wall[(N//2):wall.shape[0]-(N//2), (N//2):wall.shape[1]-(N//2)] = I_temp.copy()
temp = np.full((I_temp.shape[0]+(N//2)*2, I_temp.shape[1]+(N//2)*2), -1)
for y in range(0,wall.shape[0]):
for x in range(0,wall.shape[1]):
if wall[y,x]!=-1:
window = wall[y-(N//2):y+(N//2)+1,x-(N//2):x+(N//2)+1]
num = np.amax(window)
temp[y,x] = num
A = temp[(N//2):wall.shape[0]-(N//2), (N//2):wall.shape[1]-(N//2)].copy()
return A
4.最小滤波:此算法与最大滤波完全相同,但是我们没有找到附近的最大灰度值,而是在该像素周围的N x N邻域中找到了最小值,并将该最小灰度值写入B中的(x,y)。所得图像B称为图像I的经过最小滤波的图像,代码如下。
def min_filtering(N, A):
wall_min = np.full((A.shape[0]+(N//2)*2, A.shape[1]+(N//2)*2), 300)
wall_min[(N//2):wall_min.shape[0]-(N//2), (N//2):wall_min.shape[1]-(N//2)] = A.copy()
temp_min = np.full((A.shape[0]+(N//2)*2, A.shape[1]+(N//2)*2), 300)
for y in range(0,wall_min.shape[0]):
for x in range(0,wall_min.shape[1]):
if wall_min[y,x]!=300:
window_min = wall_min[y-(N//2):y+(N//2)+1,x-(N//2):x+(N//2)+1]
num_min = np.amin(window_min)
temp_min[y,x] = num_min
B = temp_min[(N//2):wall_min.shape[0]-(N//2), (N//2):wall_min.shape[1]-(N//2)].copy()
return B
5.因此,如果图像的背景较浅,我们要先执行最大过滤,这将为我们提供增强的背景,并将该最大过滤后的图像传递给最小过滤功能,该功能将负责实际的内容增强。
6.因此,执行最小-最大滤波后,我们获得的值不在0-255的范围内。因此,我们必须归一化使用背景减法获得的最终阵列,该方法是将原始图像减去最小-最大滤波图像,以获得去除阴影的最终图像。
#B is the filtered image and I is the original image
def background_subtraction(I, B):
O = I - B
norm_img = cv2.normalize(O, None, 0,255, norm_type=cv2.NORM_MINMAX)
return norm_img
7.变量N(用于过滤的窗口大小)将根据图像中粒子或内容的大小进行更改。对于测试图像,选择大小N = 20。增强后的最终输出图像如下所示:
输出图像相较于原始图像已经没有任何的阴影啦。
代码链接:https://github.com/kavyamusty/Shading-removal-of-images
公众号后台回复“数据集”获取30+深度学习数据集下载~
# CV技术社群邀请函 #
备注:姓名-学校/公司-研究方向-城市(如:小极-北大-目标检测-深圳)
即可申请加入极市目标检测/图像分割/工业检测/人脸/医学影像/3D/SLAM/自动驾驶/超分辨率/姿态估计/ReID/GAN/图像增强/OCR/视频理解等技术交流群
每月大咖直播分享、真实项目需求对接、求职内推、算法竞赛、干货资讯汇总、与 10000+来自港科大、北大、清华、中科院、CMU、腾讯、百度等名校名企视觉开发者互动交流~