来自:toutiao.com/i6860655404431442444
不需要担心数据库性能优化问题的日子已经一去不复返了。随着时代的进步,随着野心勃勃的企业想要变成下一个 Facebook,随着为机器学习预测收集尽可能多数据的想法的出现,作为开发人员,我们要不断地打磨我们的 API,让它们提供可靠和有效的端点,从而毫不费力地浏览海量数据。如果你做过后台开发或数据库架构,你可能是这么分页的:![](https://filescdn.proginn.com/f8f81ccfd978f1483be31a15f73b22b3/f1d72a501ef89d7ac60b43734d8b8c0b.webp)
如果你真的是这么分页,那么我不得不抱歉地说,你这样做是错的。你不以为然?没关系。Slack、Shopify 和 Mixmax 这些公司都在用我们今天将要讨论的方式进行分页。我想你很难找出一个不使用 OFFSET 和 LIMIT 进行数据库分页的人。对于简单的小型应用程序和数据量不是很大的场景,这种方式还是能够“应付”的。如果你想从头开始构建一个可靠且高效的系统,在一开始就要把它做好。今天我们将探讨已经被广泛使用的分页方式存在的问题,以及如何实现高性能分页。1.OFFSET 和 LIMIT 有什么问题?
正如前面段落所说的那样,OFFSET 和 LIMIT 对于数据量少的项目来说是没有问题的。但是,当数据库里的数据量超过服务器内存能够存储的能力,并且需要对所有数据进行分页,问题就会出现。为了实现分页,每次收到分页请求时,数据库都需要进行低效的全表扫描。什么是全表扫描?全表扫描 (又称顺序扫描) 就是在数据库中进行逐行扫描,顺序读取表中的每一行记录,然后检查各个列是否符合查询条件。这种扫描是已知最慢的,因为需要进行大量的磁盘 I/O,而且从磁盘到内存的传输开销也很大。
这意味着,如果你有 1 亿个用户,OFFSET 是 5 千万,那么它需要获取所有这些记录 (包括那么多根本不需要的数据),将它们放入内存,然后获取 LIMIT 指定的 20 条结果。10万行中的第5万行到第5万零20行
https://www.db-fiddle.com/f/3JSpBxVgcqL3W2AzfRNCyq/1?ref=hackernoon.com左边的 Schema SQL 将插入 10 万行数据,右边有一个性能很差的查询和一个较好的解决方案。只需单击顶部的 Run,就可以比较它们的执行时间。第一个查询的运行时间至少是第二个查询的 30 倍。数据越多,情况就越糟。看看我对 10 万行数据进行的 PoC。https://github.com/IvoPereira/Efficient-Pagination-SQL-PoC?ref=hackernoon.com现在你应该知道这背后都发生了什么:OFFSET 越高,查询时间就越长。2.替代方案
![](https://filescdn.proginn.com/d5843a6f35a03e8b769fd935b602c91f/456831a851e818fd309460ba87f13694.webp)
你要在本地保存上一次接收到的主键 (通常是一个 ID) 和 LIMIT,而不是 OFFSET 和 LIMIT,那么每一次的查询可能都与此类似。为什么?因为通过显式告知数据库最新行,数据库就确切地知道从哪里开始搜索(基于有效的索引),而不需要考虑目标范围之外的记录。![](https://filescdn.proginn.com/1d8753fd8607a42d8ac35dd21a82ff30/8b304acd9e46d83d6ac4ebf9129516d9.webp)
![](https://filescdn.proginn.com/355675cd7ed64e94dc36c22c1c826576/cf3ffe62c26099b1722c838e2010a25f.webp)
返回同样的结果,第一个查询使用了 12.80 秒,而第二个仅用了 0.01 秒。要使用这种基于游标的分页,需要有一个惟一的序列字段 (或多个),比如惟一的整数 ID 或时间戳,但在某些特定情况下可能无法满足这个条件。我的建议是,不管怎样都要考虑每种解决方案的优缺点,以及需要执行哪种查询。如果需要基于大量数据做查询操作,Rick James 的文章提供了更深入的指导。http://mysql.rjweb.org/doc.php/lists如果我们的表没有主键,比如是具有多对多关系的表,那么就使用传统的 OFFSET/LIMIT 方式,只是这样做存在潜在的慢查询问题。我建议在需要分页的表中使用自动递增的主键,即使只是为了分页。推荐阅读:
国人开源了一款小而全的 Java 工具类库,厉害啊!!
为什么HTTPS是安全的?
2T技术资源大放送!包括但不限于:C/C++,Linux,Python,Java,PHP,人工智能,单片机,树莓派,等等。在公众号内回复「2048」,即可免费获取!!微信扫描二维码,关注我的公众号
朕已阅 ![](https://filescdn.proginn.com/5063abd7fe5db8c9070801a0477279d2/edf14749969355acbe3c2561304c85d6.webp)