生成订单30分钟未支付,则自动取消,该怎么实现?

共 35193字,需浏览 71分钟

 ·

2021-09-11 06:01

来源:blog.csdn.net/hjm4702192/
article/details/80519010

  • 引言
  • 方案分析
    • 1.数据库轮询
    • 2.JDK的延迟队列
    • 3.时间轮算法
    • 4.redis缓存
    • 5.使用消息队列

引言

在开发中,往往会遇到一些关于延时任务的需求。例如

  • 生成订单30分钟未支付,则自动取消
  • 生成订单60秒后,给用户发短信

对上述的任务,我们给一个专业的名字来形容,那就是延时任务。那么这里就会产生一个问题,这个延时任务和定时任务的区别究竟在哪里呢?一共有如下几点区别

  1. 定时任务有明确的触发时间,延时任务没有
  2. 定时任务有执行周期,而延时任务在某事件触发后一段时间内执行,没有执行周期
  3. 定时任务一般执行的是批处理操作是多个任务,而延时任务一般是单个任务

下面,我们以判断订单是否超时为例,进行方案分析

推荐下自己做的 Spring Boot 的实战项目:

https://github.com/YunaiV/ruoyi-vue-pro

方案分析

1.数据库轮询

思路

该方案通常是在小型项目中使用,即通过一个线程定时的去扫描数据库,通过订单时间来判断是否有超时的订单,然后进行update或delete等操作

实现

博主当年早期是用quartz来实现的(实习那会的事),简单介绍一下

maven项目引入一个依赖如下所示

    <dependency>        
        <groupId>org.quartz-scheduler</groupId>        
        <artifactId>quartz</artifactId>        
        <version>2.2.2</version>    
    </dependency>

调用Demo类MyJob如下所示

package com.rjzheng.delay1; 
import org.quartz.JobBuilder;
import org.quartz.JobDetail;
import org.quartz.Scheduler;
import org.quartz.SchedulerException;
import org.quartz.SchedulerFactory;
import org.quartz.SimpleScheduleBuilder;
import org.quartz.Trigger;
import org.quartz.TriggerBuilder;
import org.quartz.impl.StdSchedulerFactory;
import org.quartz.Job;
import org.quartz.JobExecutionContext;
import org.quartz.JobExecutionException; 

public class MyJob implements Job {
    public void execute(JobExecutionContext context)
            throws JobExecutionException 
{
        System.out.println("要去数据库扫描啦。。。");
    }

    public static void main(String[] args) throws Exception {
        // 创建任务
        JobDetail jobDetail = JobBuilder.newJob(MyJob.class)
                .withIdentity("job1", "group1").build()
;
        // 创建触发器 每3秒钟执行一次
        Trigger trigger = TriggerBuilder
                .newTrigger() 
                .withIdentity("trigger1""group3")
                .withSchedule( 
                          SimpleScheduleBuilder.simpleSchedule()
                                  .withIntervalInSeconds(3).repeatForever())
                .build();
        Scheduler scheduler = new StdSchedulerFactory().getScheduler();
        // 将任务及其触发器放入调度器
        scheduler.scheduleJob(jobDetail, trigger);
        // 调度器开始调度任务
        scheduler.start();
    }
}

运行代码,可发现每隔3秒,输出如下

要去数据库扫描啦。。。

优缺点

优点:简单易行,支持集群操作

缺点 :

(1)对服务器内存消耗大

(2)存在延迟,比如你每隔3分钟扫描一次,那最坏的延迟时间就是3分钟

(3)假设你的订单有几千万条,每隔几分钟这样扫描一次,数据库损耗极大

2.JDK的延迟队列

思路

该方案是利用JDK自带的DelayQueue来实现,这是一个无界阻塞队列,该队列只有在延迟期满的时候才能从中获取元素,放入DelayQueue中的对象,是必须实现Delayed接口的。

DelayedQueue实现工作流程如下图所示

其中Poll():获取并移除队列的超时元素,没有则返回空

take():获取并移除队列的超时元素,如果没有则wait当前线程,直到有元素满足超时条件,返回结果。

实现

定义一个类OrderDelay实现Delayed,代码如下

package com.rjzheng.delay2;

import java.util.concurrent.Delayed;
import java.util.concurrent.TimeUnit;

public class OrderDelay implements Delayed {
     
    private String orderId;    
    private long timeout;     

    OrderDelay(String orderId, long timeout) {        
        this.orderId = orderId;        
        this.timeout = timeout + System.nanoTime();    
    }     

    public int compareTo(Delayed other) {        
        if (other == this)            
            return 0;        
        OrderDelay t = (OrderDelay) other;        
        long d = (getDelay(TimeUnit.NANOSECONDS) - t                
                .getDelay(TimeUnit.NANOSECONDS));        
        return (d == 0) ? 0 : ((d < 0) ? -1 : 1);    
    }

    // 返回距离你自定义的超时时间还有多少    
    public long getDelay(TimeUnit unit) {        
        return unit.convert(timeout - System.nanoTime(),TimeUnit.NANOSECONDS);
    }      
    void print() {
        System.out.println(orderId+"编号的订单要删除啦。。。。");
    }
}

运行的测试Demo为,我们设定延迟时间为3秒

package com.rjzheng.delay2; 

import java.util.ArrayList;
import java.util.List;import java.util.concurrent.DelayQueue;
import java.util.concurrent.TimeUnit; 

public class DelayQueueDemo {     
     public static void main(String[] args) {              
            // TODO Auto-generated method stub              
            List<String> list = new ArrayList<String>();              
            list.add("00000001");              
            list.add("00000002");              
            list.add("00000003");              
            list.add("00000004");              
            list.add("00000005");             
            DelayQueue<OrderDelay> queue = newDelayQueue<OrderDelay>();              
            long start = System.currentTimeMillis();              
            for(int i = 0;i<5;i++){                  
                //延迟三秒取出                
                queue.put(new OrderDelay(list.get(i),                          
                        TimeUnit.NANOSECONDS.convert(3,TimeUnit.SECONDS)));                      
                    try {                           
                        queue.take().print();                           
                        System.out.println("After " +                                   
                                (System.currentTimeMillis()-start) + " MilliSeconds");                  
                } catch (InterruptedException e) {                      
                    // TODO Auto-generated catch block                     
                    e.printStackTrace();                 
                }             
            }        
     }      
}

输出如下

00000001编号的订单要删除啦。。。。
After 3003 MilliSeconds
00000002编号的订单要删除啦。。。。
After 6006 MilliSeconds
00000003编号的订单要删除啦。。。。
After 9006 MilliSeconds
00000004编号的订单要删除啦。。。。
After 12008 MilliSeconds
00000005编号的订单要删除啦。。。。
After 15009 MilliSeconds

可以看到都是延迟3秒,订单被删除

优缺点

优点:效率高,任务触发时间延迟低。

缺点 :

(1)服务器重启后,数据全部消失,怕宕机

(2)集群扩展相当麻烦

(3)因为内存条件限制的原因,比如下单未付款的订单数太多,那么很容易就出现OOM异常

(4)代码复杂度较高

3.时间轮算法

思路

先上一张时间轮的图(这图到处都是啦)

时间轮算法可以类比于时钟,如上图箭头(指针)按某一个方向按固定频率轮动,每一次跳动称为一个 tick。这样可以看出定时轮由个3个重要的属性参数,ticksPerWheel(一轮的tick数),tickDuration(一个tick的持续时间)以及 timeUnit(时间单位),例如当ticksPerWheel=60,tickDuration=1,timeUnit=秒,这就和现实中的始终的秒针走动完全类似了。

如果当前指针指在1上面,我有一个任务需要4秒以后执行,那么这个执行的线程回调或者消息将会被放在5上。那如果需要在20秒之后执行怎么办,由于这个环形结构槽数只到8,如果要20秒,指针需要多转2圈。位置是在2圈之后的5上面(20 % 8 + 1)

实现

我们用Netty的HashedWheelTimer来实现

给Pom加上下面的依赖

    <dependency>            
        <groupId>io.netty</groupId>            
        <artifactId>netty-all</artifactId>            
        <version>4.1.24.Final</version>        
    </dependency>

测试代码HashedWheelTimerTest如下所示

package com.rjzheng.delay3;

import io.netty.util.HashedWheelTimer;
import io.netty.util.Timeout;
import io.netty.util.Timer;
import io.netty.util.TimerTask;

import java.util.concurrent.TimeUnit;

public class HashedWheelTimerTest {
    static class MyTimerTask implements TimerTask{
        boolean flag;
        public MyTimerTask(boolean flag){
            this.flag = flag;
        }
        public void run(Timeout timeout) throws Exception {
            // TODO Auto-generated method stub
             System.out.println("要去数据库删除订单了。。。。");
             this.flag =false;
        }
    }
    public static void main(String[] argv) {
        MyTimerTask timerTask = new MyTimerTask(true);
        Timer timer = new HashedWheelTimer();
        timer.newTimeout(timerTask, 5, TimeUnit.SECONDS);
        int i = 1;
        while(timerTask.flag){
            try {
                Thread.sleep(1000);
            } catch (InterruptedException e) {
                // TODO Auto-generated catch block
                e.printStackTrace();
            }
            System.out.println(i+"秒过去了");
            i++;
        }
    }
}

输出如下

1秒过去了
2秒过去了
3秒过去了
4秒过去了
5秒过去了
要去数据库删除订单了。。。。
6秒过去了

优缺点

优点:效率高,任务触发时间延迟时间比delayQueue低,代码复杂度比delayQueue低。

缺点 :

(1)服务器重启后,数据全部消失,怕宕机

(2)集群扩展相当麻烦

(3)因为内存条件限制的原因,比如下单未付款的订单数太多,那么很容易就出现OOM异常

4.redis缓存

思路一

利用redis的zset,zset是一个有序集合,每一个元素(member)都关联了一个score,通过score排序来取集合中的值

zset常用命令

  • 添加元素:ZADD key score member [[score member] [score member] …]
  • 按顺序查询元素:ZRANGE key start stop [WITHSCORES]
  • 查询元素score:ZSCORE key member
  • 移除元素:ZREM key member [member …]

测试如下


> 推荐下自己做的 Spring Cloud 的实战项目:
>
> <https://github.com/YunaiV/onemall>

# 添加单个元素

redis> ZADD page_rank 10 google.com
(integer) 1

# 添加多个元素

redis> ZADD page_rank 9 baidu.com 8 bing.com
(integer) 2

redis> ZRANGE page_rank 0 -1 WITHSCORES
1) "bing.com"
2) "8"
3) "baidu.com"
4) "9"
5) "google.com"
6) "10"

# 查询元素的score值
redis> ZSCORE page_rank bing.com
"8"

# 移除单个元素

redis> ZREM page_rank google.com
(integer) 1

redis> ZRANGE page_rank 0 -1 WITHSCORES
1) "bing.com"
2) "8"
3) "baidu.com"
4) "9"

那么如何实现呢?我们将订单超时时间戳与订单号分别设置为score和member,系统扫描第一个元素判断是否超时,具体如下图所示

实现一

package com.rjzheng.delay4;
 
import java.util.Calendar;
import java.util.Set;
import redis.clients.jedis.Jedis;
import redis.clients.jedis.JedisPool;
import redis.clients.jedis.Tuple;
   
public class AppTest {
    private static final String ADDR = "127.0.0.1";
    private static final int PORT = 6379;
    private static JedisPool jedisPool = new JedisPool(ADDR, PORT);
            
    public static Jedis getJedis() {
       return jedisPool.getResource();
    }        
    
    //生产者,生成5个订单放进去    
    public void productionDelayMessage(){        
        for(int i=0;i<5;i++){            
            //延迟3秒            
            Calendar cal1 = Calendar.getInstance(); 
            cal1.add(Calendar.SECOND, 3);            
            int second3later = (int) (cal1.getTimeInMillis() / 1000);            
            AppTest.getJedis().zadd("OrderId",second3later,"OID0000001"+i);            
            System.out.println(System.currentTimeMillis()+"ms:redis生成了一个订单任务:订单ID为"+"OID0000001"+i);
        }
    }        
    
    //消费者,取订单    
    public void consumerDelayMessage(){
        Jedis jedis = AppTest.getJedis();        
        while(true){            
            Set<Tuple> items = jedis.zrangeWithScores("OrderId"01);            
            if(items == null || items.isEmpty()){                
                System.out.println("当前没有等待的任务");                
                try {                    
                    Thread.sleep(500);              
                } catch (InterruptedException e) {
                    // TODO Auto-generated catch block                    
                    e.printStackTrace();               
                }                
                continue;            
            }            
            int  score = (int) ((Tuple)items.toArray()[0]).getScore();            
            Calendar cal = Calendar.getInstance();            
            int nowSecond = (int) (cal.getTimeInMillis() / 1000);            
            if(nowSecond >= score){                
                String orderId = ((Tuple)items.toArray()[0]).getElement();                
                jedis.zrem("OrderId", orderId);                
                System.out.println(System.currentTimeMillis() +"ms:redis消费了一个任务:消费的订单OrderId为"+orderId);
            }        
        }    
    }        
    
    public static void main(String[] args) {        
        AppTest appTest =new AppTest();        
        appTest.productionDelayMessage();        
        appTest.consumerDelayMessage();    
    }    
}

此时对应输出如下

图片

可以看到,几乎都是3秒之后,消费订单。

然而,这一版存在一个致命的硬伤,在高并发条件下,多消费者会取到同一个订单号,我们上测试代码ThreadTest

package com.rjzheng.delay4; 

import java.util.concurrent.CountDownLatch; 

public class ThreadTest {
    private static final int threadNum = 10;    
    private static CountDownLatch cdl = newCountDownLatch(threadNum);    
    static class DelayMessage implements Runnable
        public void run() {          
           try {             
               cdl.await();            
           } catch (InterruptedException e) {              
               // TODO Auto-generated catch block                
               e.printStackTrace();            
           }            
        AppTest appTest =new AppTest();            
        appTest.consumerDelayMessage();        
        }    
    }    
    public static void main(String[] args) {        
        AppTest appTest =new AppTest();        
        appTest.productionDelayMessage();        
        for(int i=0;i<threadNum;i++){            
            new Thread(new DelayMessage()).start();          
            cdl.countDown();        
        }    
    }
}

输出如下所示

图片

显然,出现了多个线程消费同一个资源的情况。

解决方案

(1)用分布式锁,但是用分布式锁,性能下降了,该方案不细说。

(2)对ZREM的返回值进行判断,只有大于0的时候,才消费数据,于是将consumerDelayMessage()方法里的

if(nowSecond >= score){    
    String orderId = ((Tuple)items.toArray()[0]).getElement();    
    jedis.zrem("OrderId", orderId);    
    System.out.println(System.currentTimeMillis()+"ms:redis消费了一个任务:消费的订单OrderId为"+orderId);
}

修改为

if(nowSecond >= score){    
    String orderId = ((Tuple)items.toArray()[0]).getElement();    
    Long num = jedis.zrem("OrderId", orderId);    
    if( num != null && num>0){        
    System.out.println(System.currentTimeMillis()+"ms:redis消费了一个任务:消费的订单OrderId为"+orderId);    
    }
}

在这种修改后,重新运行ThreadTest类,发现输出正常了

思路二

该方案使用redis的Keyspace Notifications,中文翻译就是键空间机制,就是利用该机制可以在key失效之后,提供一个回调,实际上是redis会给客户端发送一个消息。是需要redis版本2.8以上。

实现二

在redis.conf中,加入一条配置

notify-keyspace-events Ex

运行代码如下

package com.rjzheng.delay5; 

import redis.clients.jedis.Jedis;
import redis.clients.jedis.JedisPool;
import redis.clients.jedis.JedisPubSub; 

public class RedisTest {
    private static final String ADDR = "127.0.0.1";    
    private static final int PORT = 6379;    
    private static JedisPool jedis = new JedisPool(ADDR, PORT);    
    private static RedisSub sub = new RedisSub();     
    
    public static void init() {
        new Thread(new Runnable() {       
            public void run() {              
                jedis.getResource().subscribe(sub, "__keyevent@0__:expired");
            }        
        }).start();
    }     
    
    public static void main(String[] args) throws InterruptedException {        
        init();        
        for(int i =0;i<10;i++){         
            String orderId = "OID000000"+i;            
            jedis.getResource().setex(orderId, 3, orderId);            
            System.out.println(System.currentTimeMillis()+"ms:"+orderId+"订单生成");        
        }    
    }        
    
    static class RedisSub extends JedisPubSub {     
        <ahref='http://www.jobbole.com/members/wx610506454'>@Override</a>        
        public void onMessage(String channel, String message) {         
            System.out.println(System.currentTimeMillis()+"ms:"+message+"订单取消");       
        }    
    }
 }

输出如下

可以明显看到3秒过后,订单取消了

ps:redis的pub/sub机制存在一个硬伤,官网内容如下

原:Because Redis Pub/Sub is fire and forget currently there is no way to use this feature if your application demands reliable notification of events, that is, if your Pub/Sub client disconnects, and reconnects later, all the events delivered during the time the client was disconnected are lost.

翻: Redis的发布/订阅目前是即发即弃(fire and forget)模式的,因此无法实现事件的可靠通知。也就是说,如果发布/订阅的客户端断链之后又重连,则在客户端断链期间的所有事件都丢失了。因此,方案二不是太推荐。当然,如果你对可靠性要求不高,可以使用。

优缺点

优点 :

(1)由于使用Redis作为消息通道,消息都存储在Redis中。如果发送程序或者任务处理程序挂了,重启之后,还有重新处理数据的可能性。

(2)做集群扩展相当方便

(3)时间准确度高

缺点 :

(1)需要额外进行redis维护

5.使用消息队列

我们可以采用rabbitMQ的延时队列。RabbitMQ具有以下两个特性,可以实现延迟队列

  • RabbitMQ可以针对Queue和Message设置 x-message-tt,来控制消息的生存时间,如果超时,则消息变为dead letter
  • lRabbitMQ的Queue可以配置x-dead-letter-exchange 和x-dead-letter-routing-key(可选)两个参数,用来控制队列内出现了deadletter,则按照这两个参数重新路由。结合以上两个特性,就可以模拟出延迟消息的功能,具体的,我改天再写一篇文章,这里再讲下去,篇幅太长。

优缺点

优点: 高效,可以利用rabbitmq的分布式特性轻易的进行横向扩展,消息支持持久化增加了可靠性。

缺点:本身的易用度要依赖于rabbitMq的运维.因为要引用rabbitMq,所以复杂度和成本变高

 关注公众号,回复下面关键字 


要Java学习完整路线,回复  路线 

缺Java入门视频,回复 视频 

要Java面试经验,回复  面试 

缺Java项目,回复: 项目 

进Java粉丝群: 加群 


PS:如果觉得我的分享不错,欢迎大家随手点赞、在看。

(完)




加我"微信获取一份 最新Java面试题资料

请备注:666不然不通过~


最近好文


1、Spring Boot 实现扫码登录,这种方式太香了!!

2、SpringSecurity + JWT 实现单点登录

3、基于 Vue+Spring 前后端分离管理系统ELAdmin

4、Spring Boot 接入支付宝完整流程实战

5、Spring Boot 实现多图片上传并回显,涨姿势了~



最近面试BAT,整理一份面试资料Java面试BAT通关手册,覆盖了Java核心技术、JVM、Java并发、SSM、微服务、数据库、数据结构等等。
获取方式:关注公众号并回复 java 领取,更多内容陆续奉上。
明天见(。・ω・。)ノ♡
浏览 13
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报
评论
图片
表情
推荐