三种合并请求的方式帮提高接口性能
共 4155字,需浏览 9分钟
·
2022-05-18 19:37
点击关注公众号:互联网架构师,后台回复 2T获取2TB学习资源!
前言
工作中,我们常见的请求模型都是”请求-应答”式,即一次请求中,服务给请求分配一个独立的线程,一块独立的内存空间,所有的操作都是独立的,包括资源和系统运算。我们也知道,在请求中处理一次系统 I/O 的消耗是非常大的,如果有非常多的请求都进行同一类 I/O 操作,那么是否可以将这些 I/O 操作都合并到一起,进行一次 I/O 操作,是否可以大大降低下游资源服务器的负担呢?
最近我工作之余的大部分时间都花在这个问题的探究上了,对比了几个现有类库,为了解决一个小问题把 hystrix javanica 的代码翻了一遍,也根据自己工作中遇到的业务需求实现了一个简单的合并类,收获还是挺大的。可能这个需求有点”偏门”,在网上搜索结果并不多,也没有综合一点的资料,索性自己总结分享一下,希望能帮到后来遇到这种问题的小伙伴。
1、 Hystrix Collapser
hystrix
开源的请求合并类库(知名的)好像也只有 Netflix 公司开源的 Hystrix 了, hystrix 专注于保持 WEB 服务器在高并发环境下的系统稳定,我们常用它的熔断器(Circuit Breaker) 来实现服务的服务隔离和灾时降级,有了它,可以使整个系统不至于被某一个接口的高并发洪流冲塌,即使接口挂了也可以将服务降级,返回一个人性化的响应。请求合并作为一个保障下游服务稳定的利器,在 hystrix 内实现也并不意外。
我们在使用 hystrix 时,常用它的 javanica 模块,以注解的方式编写 hystrix 代码,使代码更简洁而且对业务代码侵入更低。所以在项目中我们一般至少需要引用 hystrix-core 和 hystrix-javanica 两个包。
另外,hystrix 的实现都是通过 AOP,我们要还要在项目 xml 里显式配置 HystrixAspect 的 bean 来启用它。
<aop:aspectj-autoproxy/>
<bean id="hystrixAspect" class="com.netflix.hystrix.contrib.javanica.aop.aspectj.HystrixCommandAspect" />
collapser
hystrix collapser 是 hystrix 内的请求合并器,它有自定义 BatchMethod 和 注解两种实现方式,自定义 BatchMethod 网上有各种教程,实现起来很复杂,需要手写大量代码,而注解方式只需要添加两行注解即可,但配置方式我在官方文档上也没找见,中文方面本文应该是独一份儿了。
其实现需要注意的是:
我们在需要合并的方法上添加 @HystrixCollapser 注解,在定义好的合并方法上添加 @HystrixCommand 注解;
single 方法只能传入一个参数,多参数情况下需要自己包装一个参数类,而 batch 方法需要 java.util.List<SingleParam>;
下面是一个简单的示例:
public class HystrixCollapserSample {
@HystrixCollapser(batchMethod = "batch")
public Future<Boolean> single(String input) {
return null; // single方法不会被执行到
}
public List<Boolean> batch(List<String> inputs) {
return inputs.stream().map(it -> Boolean.TRUE).collect(Collectors.toList());
}
}
源码实现
为了解决 hystrix collapser 的配置问题看了下 hystrix javanica 的源码,这里简单总结一下 hystrix 请求合并器的具体实现,源码的详细解析在我的笔记:Hystrix collasper 源码解析。
在 spring-boot 内注册切面类的 bean,里面包含 @HystrixCollapser 注解切面; 在方法执行时检测到方法被 HystrixCollapser 注解后,spring 调用 methodsAnnotatedWithHystrixCommand方法来执行 hystrix 代理; hystrix 获取一个 collapser 实例(在当前 scope 内检测不到即创建); hystrix 将当前请求的参数提交给 collapser, 由 collapser 存储在一个 concurrentHashMap (RequestArgumentType -> CollapsedRequest)内,此方法会创建一个 Observable 对象,并返回一个 观察此对象的 Future 给业务线程; collpser 在创建时会创建一个 timer 线程,定时消费存储的请求,timer 会将多个请求构造成一个合并后的请求,调用 batch 执行后将结果顺序映射到输出参数,并通知 Future 任务已完成。
需要注意,由于需要等待 timer 执行真正的请求操作,collapser 会导致所有的请求的 cost 都会增加约 timerInterval/2 ms;
配置
maxRequestsInBatch, 构造批量请求时,使用的单个请求的最大数量; timerDelayInMilliseconds, 此选项配置 collapser 的 timer 线程多久会合并一次请求; requestCache.enabled, 配置提交请求时是否缓存;
@HystrixCollapser(
batchMethod = ,
collapserKey = ,
scope = com.netflix.hystrix.HystrixCollapser.Scope.GLOBAL,
collapserProperties = {
@HystrixProperty(name = , , value = )
,
})
2、BatchCollapser
设计
实现
以下是具体的代码实现:
public class BatchCollapser<E> implements InitializingBean {
private static final Logger logger = LoggerFactory.getLogger(BatchCollapser.class);
private static volatile Map<Class, BatchCollapser> instance = Maps.newConcurrentMap();
private static final ScheduledExecutorService SCHEDULE_EXECUTOR = Executors.newScheduledThreadPool(1);
private volatile LinkedBlockingDeque<E> batchContainer = new LinkedBlockingDeque<>();
private Handler<List<E>, Boolean> cleaner;
private long interval;
private int threshHold;
private BatchCollapser(Handler<List<E>, Boolean> cleaner, int threshHold, long interval) {
this.cleaner = cleaner;
this.threshHold = threshHold;
this.interval = interval;
}
public void afterPropertiesSet() throws Exception {
SCHEDULE_EXECUTOR.scheduleAtFixedRate(() -> {
try {
this.clean();
} catch (Exception e) {
logger.error("clean container exception", e);
}
}, 0, interval, TimeUnit.MILLISECONDS);
}
public void submit(E event) {
batchContainer.add(event);
if (batchContainer.size() >= threshHold) {
clean();
}
}
private void clean() {
List<E> transferList = Lists.newArrayListWithExpectedSize(threshHold);
batchContainer.drainTo(transferList, 100);
if (CollectionUtils.isEmpty(transferList)) {
return;
}
try {
cleaner.handle(transferList);
} catch (Exception e) {
logger.error("batch execute error, transferList:{}", transferList, e);
}
}
public static <E> BatchCollapser getInstance(Handler<List<E>, Boolean> cleaner, int threshHold, long interval) {
Class jobClass = cleaner.getClass();
if (instance.get(jobClass) == null) {
synchronized (BatchCollapser.class) {
if (instance.get(jobClass) == null) {
instance.put(jobClass, new BatchCollapser<>(cleaner, threshHold, interval));
}
}
}
return instance.get(jobClass);
}
}
以下代码内需要注意的点:
由于合并器的全局性需求,需要将合并器实现为一个单例,另外为了提升它的通用性,内部使用使用 concurrentHashMap 和 double check 实现了一个简单的单例工厂。
为了区分不同用途的合并器,工厂需要传入一个实现了 Handler 的实例,通过实例的 class 来对请求进行分组存储。
由于 java.util.Timer 的阻塞特性,一个 Timer 线程在阻塞时不会启动另一个同样的 Timer 线程,所以使用 ScheduledExecutorService 定时启动 Timer 线程。
# 3、ConcurrentHashMultiset
设计
上面介绍的请求合并都是将多个请求一次发送,下游服务器处理时本质上还是多个请求,最好的请求合并是在内存中进行,将请求结果简单合并成一个发送给下游服务器。如我们经常会遇到的需求:元素分值累加或数据统计,就可以先在内存中将某一项的分值或数据累加起来,定时请求数据库保存。
Guava 内就提供了这么一种数据结构:ConcurrentHashMultiset,它不同于普通的 set 结构存储相同元素时直接覆盖原有元素,而是给每个元素保持一个计数 count, 插入重复时元素的 count 值加1。而且它在添加和删除时并不加锁也能保证线程安全,具体实现是通过一个 while(true) 循环尝试操作,直到操作够所需要的数量。
ConcurrentHashMultiset 这种排重计数的特性,非常适合数据统计这种元素在短时间内重复率很高的场景,经过排重后的数量计算,可以大大降低下游服务器的压力,即使重复率不高,能用少量的内存空间换取系统可用性的提高,也是很划算的。
实现
使用 ConcurrentHashMultiset 进行请求合并与使用普通容器在整体结构上并无太大差异,具体类似于:
if (ConcurrentHashMultiset.isEmpty()) {
return;
}
List<Request> transferList = Lists.newArrayList();
ConcurrentHashMultiset.elementSet().forEach(request -> {
int count = ConcurrentHashMultiset.count(request);
if (count <= 0) {
return;
}
transferList.add(count == 1 ? request : new Request(request.getIncrement() * count));
ConcurrentHashMultiset.remove(request, count);
});
小结
最后总结一下各个技术适用的场景:
hystrix collapser: 需要每个请求的结果,并且不在意每个请求的 cost 会增加; BatchCollapser: 不在意请求的结果,需要请求合并能在时间和数量两个维度上触发; ConcurrentHashMultiset:请求重复率很高的统计类场景;
另外,如果选择自己来实现的话,完全可以将 BatchCollapser 和 ConcurrentHashMultiset 结合一下,在BatchCollapser 里使用 ConcurrentHashMultiset 作为容器,这样就可以结合两者的优势了。
-End-
正文结束
1.心态崩了!税前2万4,到手1万4,年终奖扣税方式1月1日起施行~