用 Python 优雅地玩转 Elasticsearch:实用技巧与最佳实践

共 13690字,需浏览 28分钟

 ·

2024-04-11 13:22

Elasticsearch,这个开源的分布式搜索与数据分析引擎,因其强大的全文搜索功能而广受欢迎。

尽管Elasticsearch的核心是用Java编写的,它提供了REST API,让各种编程语言的开发者都能轻松与之交互,Python当然也不例外。

今天,我们将深入探讨如何将 Elasticsearch 与 Python 结合使用,提升我们的项目到新的高度。

97b395e7431d6d43acad7c51d8d1873c.webp

1、入门准备

首先,确保我们有一个运行中的 Elasticsearch 8.X 实例、Kibana实例。

58690c54006fc766b613e1a28c2eaf97.webp

部署搭建细节推荐阅读《一本书讲透Elasticsearch》第 3 章 Elasticsearch 集群部署。

2、Elasticsearch Python 客户端介绍

在Python项目中,我们可以选择以下几个库与Elasticsearch交互:

elasticsearch-py: 官方提供的低级客户端(Official low-level client for Elasticsearch),直接且灵活。

https://elasticsearch-py.readthedocs.io/en/v8.12.1/

elasticsearch-dsl:基于 elasticsearch-py 的高级封装,简化了很多操作,更适合日常使用。

https://elasticsearch-dsl.readthedocs.io/en/latest/

django-elasticsearch-dsl:为 Django 用户设计,基于elasticsearch-dsl,实现了与Django的深度集成。

https://django-elasticsearch-dsl.readthedocs.io/en/latest/

3、Elasticsearch Python 客户端适用场景及优缺点

客户端 应用场景 优点 缺点
elasticsearch-py 直接与Elasticsearch交互的底层操作 - 完整访问Elasticsearch API
- 灵活性高
- 代码复杂,易出错
- 需要深入理解ES的查询DSL
elasticsearch-dsl 构建复杂搜索查询 - 简化查询构建
- 更Pythonic的接口
- 减少语法错误的风险
- 学习成本相对较高
django-elasticsearch-dsl 在Django项目中使用Elasticsearch - 与Django无缝集成
- 自动同步Django模型与Elasticsearch文档
- 限定于Django项目
- 相比直接使用elasticsearch-py有更多抽象

4、使用 elasticsearch-py 进行增删改查基础操作

elasticsearch-py 是Elasticsearch的官方低级Python客户端。

它允许我们执行所有基本和高级的Elasticsearch操作,包括直接与集群交互、管理索引、执行CRUD(创建、读取、更新、删除)操作以及搜索。

以下是使用elasticsearch-py的一些基础操作示例:

4.1 导入依赖

导入必要的Python库,包括datetime、Elasticsearch、configparser,并配置警告过滤以忽略警告信息。

      
        from elasticsearch import Elasticsearch
import configparser
import warnings

warnings.filterwarnings("ignore")

4.2 初始化Elasticsearch客户端

init_es_client函数从配置文件config.ini读取Elasticsearch的配置(如主机地址、用户名和密码),并初始化Elasticsearch客户端。这允许与Elasticsearch集群建立连接。

      
        def init_es_client(config_path='./conf/config.ini'):
    """初始化并返回Elasticsearch客户端"""
    # 初始化配置解析器
    config = configparser.ConfigParser()
    # 读取配置文件
    config.read(config_path)
    # 从配置文件中获取Elasticsearch配置
    es_host = config.get('elasticsearch''ES_HOST')
    es_user = config.get('elasticsearch''ES_USER')
    es_password = config.get('elasticsearch''ES_PASSWORD')

    es = Elasticsearch(
        hosts=[es_host],
        basic_auth=(es_user, es_password),
        verify_certs=False,
        ca_certs='conf/http_ca.crt'
    )
    return es
basic_auth=(es_user, es_password)

Elasticsearch 8.X要求客户端连接时进行身份验证。这里使用基本认证(HTTP Basic Authentication) 提供用户名和密码 。这两个值应该对应于有效的Elasticsearch用户凭证,该用户需要有足够的权限执行客户端请求的操作。

verify_certs=False

这个选项告诉客户端是否验证Elasticsearch服务器的TLS证书。在生产环境中,我们应该将其设置为True以确保安全的通信。将此设置为False可能会导致中间人攻击等安全风险。在开发或测试环境中,如果使用的是自签名证书,可能需要暂时设置为False来避免验证错误。

ca_certs='conf/http_ca.crt'

当verify_certs=True时,这里指定了CA证书的路径,客户端将使用它来验证服务器证书的签名。这是实现TLS加密通信的关键部分。在Elasticsearch 8.X中,如果启用了安全特性(默认情况下启用),那么客户端需要信任连接到的Elasticsearch服务器使用的CA。如果Elasticsearch使用的是自签名证书或私有CA签发的证书,那么我们需要在客户端提供CA证书的路径。

对于Elasticsearch 8.X版本,正确配置客户端以安全地连接到Elasticsearch服务是非常重要的。这包括使用HTTPS协议、提供正确的用户认证凭证,以及在启用了TLS加密通信时验证服务器证书。为了最大化安全性和兼容性,强烈推荐在生产环境中使用由受信任CA签发的证书,并且始终验证服务器证书。

4.3 创建索引

create_index函数尝试创建一个新索引。如果指定的索引名已存在,则忽略创建操作。索引是数据存储和搜索的基本单位。

      
        def create_index(es, index_name="test-index"):
    """创建索引,如果索引已存在则忽略"""
    if not es.indices.exists(index=index_name):
        es.indices.create(index=index_name)

4.4 定义映射

define_mapping函数为索引设置映射。映射定义了索引中文档的字段类型,如文本、整数和关键词等。这有助于Elasticsearch理解字段内容并优化搜索和聚合操作。

      
        def define_mapping(es, index_name="test-index"):
    """为索引定义映射"""
    mapping = {
        "mappings": {
            "properties": {
                "name": {"type""text"},
                "age": {"type""integer"},
                "email": {"type""keyword"}
            }
        }
    }
    es.indices.create(index=index_name, body=mapping, ignore=400)  # ignore=400忽略索引已存在错误

4.5 插入文档

insert_document函数向指定索引插入(或更新)一个文档。文档由一个Python字典表示,可以包含多个字段和值。如果提供了doc_id,该ID将用于文档;否则,Elasticsearch会自动生成一个ID。

      
        def insert_document(es, index_name="test-index", doc_id=None, document=None):
    """插入文档到指定索引"""
    es.index(index=index_name, id=doc_id, document=document)

4.6 更新文档

update_document函数更新指定索引中的特定文档。需要文档的ID和要更新的字段。

      
        def update_document(es, index_name="test-index", doc_id=None, updated_doc=None):
    """更新指定ID的文档"""
    es.update(index=index_name, id=doc_id, body={"doc": updated_doc})

4.7 删除文档

delete_document函数从指定索引中删除特定ID的文档。

      
        def delete_document(es, index_name="test-index", doc_id=None):
    """删除指定ID的文档"""
    es.delete(index=index_name, id=doc_id)

4.8 搜索文档

search_documents 函数在指定索引中执行搜索查询,并返回匹配的文档。查询通过一个查询DSL(Domain-Specific Language)构建,可以非常灵活地定义搜索条件。

      
        def search_documents(es, index_name="test-index", query=None):
    """在指定索引中搜索文档"""
    return es.search(index=index_name, body=query)

4.9 main函数

main函数是程序的入口点,按顺序执行了创建索引、定义映射、插入文档、更新文档、搜索文档和删除文档的操作,演示了与Elasticsearch交互的完整流程。

      
        def main():
    # 初始化Elasticsearch客户端
    es = init_es_client()

    # 创建索引
    create_index(es)

    # 定义映射
    define_mapping(es)

    # 插入文档
    doc = {
        "name""John Doe",
        "age": 30,
        "email""john.doe@example.com"
    }
    insert_document(es, doc_id="1", document=doc)

    # 更新文档
    # 注意:这里假设我们知道文档的ID。实际使用时可能需要通过搜索等方式来确定ID
    update_document(es, doc_id="1", updated_doc={"age": 31})

    # 搜索文档
    query = {
        "query": {
            "match": {
                "name""John Doe"
            }
        }
    }
    search_result = search_documents( es, query=query )
    print( search_result )

    # 删除文档
    delete_document(es, doc_id="1")

以上示例展示了使用elasticsearch-py进行基本的Elasticsearch操作。

这些操作涵盖了创建和删除索引、定义映射、插入、更新和删除文档以及基本的搜索功能。

elasticsearch-py提供了访问Elasticsearch强大功能的直接途径,但正如之前讨论的,使用它需要对Elasticsearch的工作原理有深入理解。

5、使用 elasticsearch-dsl 进行基础操作

如下代码演示了如何使用 elasticsearch-dsl ,一个Python库,以便与Elasticsearch进行高效交互。

我们将涵盖初始化客户端、创建索引、文档的CRUD操作以及执行搜索查询。

5.1 初始化 Elasticsearch 客户端

为了与Elasticsearch集群交互,首先需要建立连接。我们通过读取配置文件来获取连接信息,并创建一个默认连接。

      
        def init_es_client_dsl(config_path='./conf/config.ini'):
    config = configparser.ConfigParser()
    config.read(config_path)
    es_host = config.get('elasticsearch''ES_HOST')
    es_user = config.get('elasticsearch''ES_USER')
    es_password = config.get('elasticsearch''ES_PASSWORD')

    connections.create_connection(
        hosts=[es_host],
        http_auth=(es_user, es_password),
        verify_certs=False
    )

5.2 创建索引

在Elasticsearch中,索引是存储文档的容器。我们定义了一个文档类 MyDocument,指定了索引名称和映射,并删除已存在的同名索引后重新创建。

      
        class MyDocument(Document):
    name = Text()
    age = Integer()
    email = Text()

    class Index:
        name = 'test-index'
        settings = { "number_of_shards": 1, }

def create_index_dsl():
    es = connections.get_connection()
    es.indices.delete(index='test-index', ignore=[400, 404])
    MyDocument.init()

5.3 插入文档

将一个新文档插入到Elasticsearch。如果提供了id,将使用它作为文档ID;否则,Elasticsearch会自动生成一个。

      
        def insert_document_dsl(document):
    doc = MyDocument(meta={'id': document.get('id', None)}, **document)
    doc.save()

5.4 更新文档

根据文档ID更新已存在的文档。这里我们更新了文档的某些字段。

      
        def update_document_dsl(doc_id, updated_doc):
    doc = MyDocument.get(id=doc_id)
    for key, value in updated_doc.items():
        setattr(doc, key, value)
    doc.save()

5.5 删除文档

根据ID删除指定的文档。

      
        def delete_document_dsl(doc_id):
    doc = MyDocument.get(id=doc_id)
    doc.delete()

5.6 搜索文档

执行一个搜索查询,返回匹配指定查询条件的文档。在此例中,我们使用match查询匹配名字字段。

      
        def search_documents_dsl(query):
    es = connections.get_connection()
    es.indices.refresh(index="test-index")

    s = Search(index="test-index").query("match", name=query)
    response = s.execute()
    return response

5.7 主函数

main_ds l函数串联了上述所有步骤,展示了如何在实际应用中使用这些功能。

      
        def main_dsl():
    init_es_client_dsl()
    create_index_dsl()
    insert_document_dsl({ ... })
    results = search_documents_dsl('John Doe')
    update_document_dsl('1', { ... })
    delete_document_dsl('1')

5.8 运行

将上述代码保存为Python文件并执行,可以看到从插入到搜索、更新和删除文档的完整流程。

73a84f29c08459217670a3f76e85bf10.webp

5.9 特别强调——默认连接池管理

在elasticsearch-dsl中,当我们创建查询或者执行任何需要与Elasticsearch服务器通信的操作时,并不需要每次都显式地指定Elasticsearch连接实例。

这是因为elasticsearch-dsl内部维护了一个默认的连接池。当我们首次使用connections.create_connection函数创建连接时,如果不指定别名,这个连接就被设置为默认连接。

官方alias 示例:

      
        from elasticsearch_dsl import connections

connections.create_connection(alias='my_new_connection', hosts=['localhost'], timeout=60)

后续的所有操作,如搜索查询,都会自动使用这个默认连接,除非咱们通过using参数显式指定了另一个连接。

这种设计使得在大多数情况下,我们只需在应用启动时建立一次连接,而不需要在每个查询中重复指定连接信息,从而简化了代码并提高了代码的可读性和维护性。

参见:

https://elasticsearch-dsl.readthedocs.io/en/latest/configuration.html#default-connection

6、小结

篇幅原因,django-elasticsearch-dsl API 没有展开。如果需要,欢迎留言讨论。

在本文中,我们探讨了如何将Elasticsearch与Python结合使用,通过两种主要的Python客户端——elasticsearch-py和elasticsearch-dsl。

elasticsearch-py提供了直接且灵活的底层API访问,适用于需要完整控制Elasticsearch交互细节的场景。

相比之下,elasticsearch-dsl提供了更高级的抽象,通过更为Pythonic的接口简化了复杂搜索查询的构建,使得代码更加简洁易读,尤其适合日常使用和复杂查询构建。

5a685c47429886319d80baf5d395f904.webp

此外,我们还介绍了如何通过elasticsearch-dsl内部管理的默认连接池来简化连接管理,避免了在每次查询时重复指定连接信息,从而提高了开发效率和代码的可维护性。通过这种方式,开发者只需在应用启动时配置一次连接,之后便可以在整个应用中复用这个默认连接。

无论是直接使用elasticsearch-py进行底层操作,还是利用elasticsearch-dsl进行更加高效的数据处理和搜索,Elasticsearch都能为Python开发者提供强大的搜索和数据分析能力,帮助他们轻松应对各种数据处理和搜索需求,将项目提升到新的高度。在选择合适的客户端和API时,重要的是根据项目的具体需求和团队的熟悉程度来做出决策,以确保既能充分发挥Elasticsearch的强大功能,又能保持代码的可读性和可维护性。


7 年+积累、 Elastic 创始人Shay Banon 等 15 位专家推荐的 Elasticsearch 8.X新书已上线


短时间快习得多干货!

和全球 近2000+ Elastic 爱好者一起精进!

elastic6.cn ——ElasticStack进阶助手


比同事 抢先 一步学习进阶干货
浏览 15
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报
评论
图片
表情
推荐
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报