用 Python 优雅地玩转 Elasticsearch:实用技巧与最佳实践
共 13690字,需浏览 28分钟
·
2024-04-11 13:22
Elasticsearch,这个开源的分布式搜索与数据分析引擎,因其强大的全文搜索功能而广受欢迎。
尽管Elasticsearch的核心是用Java编写的,它提供了REST API,让各种编程语言的开发者都能轻松与之交互,Python当然也不例外。
今天,我们将深入探讨如何将 Elasticsearch 与 Python 结合使用,提升我们的项目到新的高度。
1、入门准备
首先,确保我们有一个运行中的 Elasticsearch 8.X 实例、Kibana实例。
部署搭建细节推荐阅读《一本书讲透Elasticsearch》第 3 章 Elasticsearch 集群部署。
2、Elasticsearch Python 客户端介绍
在Python项目中,我们可以选择以下几个库与Elasticsearch交互:
elasticsearch-py: 官方提供的低级客户端(Official low-level client for Elasticsearch),直接且灵活。https://elasticsearch-py.readthedocs.io/en/v8.12.1/
elasticsearch-dsl:基于 elasticsearch-py 的高级封装,简化了很多操作,更适合日常使用。https://elasticsearch-dsl.readthedocs.io/en/latest/
django-elasticsearch-dsl:为 Django 用户设计,基于elasticsearch-dsl,实现了与Django的深度集成。https://django-elasticsearch-dsl.readthedocs.io/en/latest/
3、Elasticsearch Python 客户端适用场景及优缺点
客户端 | 应用场景 | 优点 | 缺点 |
---|---|---|---|
elasticsearch-py | 直接与Elasticsearch交互的底层操作 | - 完整访问Elasticsearch API - 灵活性高 |
- 代码复杂,易出错 - 需要深入理解ES的查询DSL |
elasticsearch-dsl | 构建复杂搜索查询 | - 简化查询构建 - 更Pythonic的接口 - 减少语法错误的风险 |
- 学习成本相对较高 |
django-elasticsearch-dsl | 在Django项目中使用Elasticsearch | - 与Django无缝集成 - 自动同步Django模型与Elasticsearch文档 |
- 限定于Django项目 - 相比直接使用elasticsearch-py有更多抽象 |
4、使用 elasticsearch-py 进行增删改查基础操作
elasticsearch-py 是Elasticsearch的官方低级Python客户端。
它允许我们执行所有基本和高级的Elasticsearch操作,包括直接与集群交互、管理索引、执行CRUD(创建、读取、更新、删除)操作以及搜索。
以下是使用elasticsearch-py的一些基础操作示例:
4.1 导入依赖
导入必要的Python库,包括datetime、Elasticsearch、configparser,并配置警告过滤以忽略警告信息。
from elasticsearch import Elasticsearch
import configparser
import warnings
warnings.filterwarnings("ignore")
4.2 初始化Elasticsearch客户端
init_es_client函数从配置文件config.ini读取Elasticsearch的配置(如主机地址、用户名和密码),并初始化Elasticsearch客户端。这允许与Elasticsearch集群建立连接。
def init_es_client(config_path='./conf/config.ini'):
"""初始化并返回Elasticsearch客户端"""
# 初始化配置解析器
config = configparser.ConfigParser()
# 读取配置文件
config.read(config_path)
# 从配置文件中获取Elasticsearch配置
es_host = config.get('elasticsearch', 'ES_HOST')
es_user = config.get('elasticsearch', 'ES_USER')
es_password = config.get('elasticsearch', 'ES_PASSWORD')
es = Elasticsearch(
hosts=[es_host],
basic_auth=(es_user, es_password),
verify_certs=False,
ca_certs='conf/http_ca.crt'
)
return es
basic_auth=(es_user, es_password)
Elasticsearch 8.X要求客户端连接时进行身份验证。这里使用基本认证(HTTP Basic Authentication) 提供用户名和密码 。这两个值应该对应于有效的Elasticsearch用户凭证,该用户需要有足够的权限执行客户端请求的操作。
verify_certs=False
这个选项告诉客户端是否验证Elasticsearch服务器的TLS证书。在生产环境中,我们应该将其设置为True以确保安全的通信。将此设置为False可能会导致中间人攻击等安全风险。在开发或测试环境中,如果使用的是自签名证书,可能需要暂时设置为False来避免验证错误。
ca_certs='conf/http_ca.crt'
当verify_certs=True时,这里指定了CA证书的路径,客户端将使用它来验证服务器证书的签名。这是实现TLS加密通信的关键部分。在Elasticsearch 8.X中,如果启用了安全特性(默认情况下启用),那么客户端需要信任连接到的Elasticsearch服务器使用的CA。如果Elasticsearch使用的是自签名证书或私有CA签发的证书,那么我们需要在客户端提供CA证书的路径。
对于Elasticsearch 8.X版本,正确配置客户端以安全地连接到Elasticsearch服务是非常重要的。这包括使用HTTPS协议、提供正确的用户认证凭证,以及在启用了TLS加密通信时验证服务器证书。为了最大化安全性和兼容性,强烈推荐在生产环境中使用由受信任CA签发的证书,并且始终验证服务器证书。
4.3 创建索引
create_index函数尝试创建一个新索引。如果指定的索引名已存在,则忽略创建操作。索引是数据存储和搜索的基本单位。
def create_index(es, index_name="test-index"):
"""创建索引,如果索引已存在则忽略"""
if not es.indices.exists(index=index_name):
es.indices.create(index=index_name)
4.4 定义映射
define_mapping函数为索引设置映射。映射定义了索引中文档的字段类型,如文本、整数和关键词等。这有助于Elasticsearch理解字段内容并优化搜索和聚合操作。
def define_mapping(es, index_name="test-index"):
"""为索引定义映射"""
mapping = {
"mappings": {
"properties": {
"name": {"type": "text"},
"age": {"type": "integer"},
"email": {"type": "keyword"}
}
}
}
es.indices.create(index=index_name, body=mapping, ignore=400) # ignore=400忽略索引已存在错误
4.5 插入文档
insert_document函数向指定索引插入(或更新)一个文档。文档由一个Python字典表示,可以包含多个字段和值。如果提供了doc_id,该ID将用于文档;否则,Elasticsearch会自动生成一个ID。
def insert_document(es, index_name="test-index", doc_id=None, document=None):
"""插入文档到指定索引"""
es.index(index=index_name, id=doc_id, document=document)
4.6 更新文档
update_document函数更新指定索引中的特定文档。需要文档的ID和要更新的字段。
def update_document(es, index_name="test-index", doc_id=None, updated_doc=None):
"""更新指定ID的文档"""
es.update(index=index_name, id=doc_id, body={"doc": updated_doc})
4.7 删除文档
delete_document函数从指定索引中删除特定ID的文档。
def delete_document(es, index_name="test-index", doc_id=None):
"""删除指定ID的文档"""
es.delete(index=index_name, id=doc_id)
4.8 搜索文档
search_documents 函数在指定索引中执行搜索查询,并返回匹配的文档。查询通过一个查询DSL(Domain-Specific Language)构建,可以非常灵活地定义搜索条件。
def search_documents(es, index_name="test-index", query=None):
"""在指定索引中搜索文档"""
return es.search(index=index_name, body=query)
4.9 main函数
main函数是程序的入口点,按顺序执行了创建索引、定义映射、插入文档、更新文档、搜索文档和删除文档的操作,演示了与Elasticsearch交互的完整流程。
def main():
# 初始化Elasticsearch客户端
es = init_es_client()
# 创建索引
create_index(es)
# 定义映射
define_mapping(es)
# 插入文档
doc = {
"name": "John Doe",
"age": 30,
"email": "john.doe@example.com"
}
insert_document(es, doc_id="1", document=doc)
# 更新文档
# 注意:这里假设我们知道文档的ID。实际使用时可能需要通过搜索等方式来确定ID
update_document(es, doc_id="1", updated_doc={"age": 31})
# 搜索文档
query = {
"query": {
"match": {
"name": "John Doe"
}
}
}
search_result = search_documents( es, query=query )
print( search_result )
# 删除文档
delete_document(es, doc_id="1")
以上示例展示了使用elasticsearch-py进行基本的Elasticsearch操作。
这些操作涵盖了创建和删除索引、定义映射、插入、更新和删除文档以及基本的搜索功能。
elasticsearch-py提供了访问Elasticsearch强大功能的直接途径,但正如之前讨论的,使用它需要对Elasticsearch的工作原理有深入理解。
5、使用 elasticsearch-dsl 进行基础操作
如下代码演示了如何使用 elasticsearch-dsl
,一个Python库,以便与Elasticsearch进行高效交互。
我们将涵盖初始化客户端、创建索引、文档的CRUD操作以及执行搜索查询。
5.1 初始化 Elasticsearch 客户端
为了与Elasticsearch集群交互,首先需要建立连接。我们通过读取配置文件来获取连接信息,并创建一个默认连接。
def init_es_client_dsl(config_path='./conf/config.ini'):
config = configparser.ConfigParser()
config.read(config_path)
es_host = config.get('elasticsearch', 'ES_HOST')
es_user = config.get('elasticsearch', 'ES_USER')
es_password = config.get('elasticsearch', 'ES_PASSWORD')
connections.create_connection(
hosts=[es_host],
http_auth=(es_user, es_password),
verify_certs=False
)
5.2 创建索引
在Elasticsearch中,索引是存储文档的容器。我们定义了一个文档类 MyDocument,指定了索引名称和映射,并删除已存在的同名索引后重新创建。
class MyDocument(Document):
name = Text()
age = Integer()
email = Text()
class Index:
name = 'test-index'
settings = { "number_of_shards": 1, }
def create_index_dsl():
es = connections.get_connection()
es.indices.delete(index='test-index', ignore=[400, 404])
MyDocument.init()
5.3 插入文档
将一个新文档插入到Elasticsearch。如果提供了id,将使用它作为文档ID;否则,Elasticsearch会自动生成一个。
def insert_document_dsl(document):
doc = MyDocument(meta={'id': document.get('id', None)}, **document)
doc.save()
5.4 更新文档
根据文档ID更新已存在的文档。这里我们更新了文档的某些字段。
def update_document_dsl(doc_id, updated_doc):
doc = MyDocument.get(id=doc_id)
for key, value in updated_doc.items():
setattr(doc, key, value)
doc.save()
5.5 删除文档
根据ID删除指定的文档。
def delete_document_dsl(doc_id):
doc = MyDocument.get(id=doc_id)
doc.delete()
5.6 搜索文档
执行一个搜索查询,返回匹配指定查询条件的文档。在此例中,我们使用match查询匹配名字字段。
def search_documents_dsl(query):
es = connections.get_connection()
es.indices.refresh(index="test-index")
s = Search(index="test-index").query("match", name=query)
response = s.execute()
return response
5.7 主函数
main_ds l函数串联了上述所有步骤,展示了如何在实际应用中使用这些功能。
def main_dsl():
init_es_client_dsl()
create_index_dsl()
insert_document_dsl({ ... })
results = search_documents_dsl('John Doe')
update_document_dsl('1', { ... })
delete_document_dsl('1')
5.8 运行
将上述代码保存为Python文件并执行,可以看到从插入到搜索、更新和删除文档的完整流程。
5.9 特别强调——默认连接池管理
在elasticsearch-dsl中,当我们创建查询或者执行任何需要与Elasticsearch服务器通信的操作时,并不需要每次都显式地指定Elasticsearch连接实例。
这是因为elasticsearch-dsl内部维护了一个默认的连接池。当我们首次使用connections.create_connection函数创建连接时,如果不指定别名,这个连接就被设置为默认连接。
官方alias 示例:
from elasticsearch_dsl import connections
connections.create_connection(alias='my_new_connection', hosts=['localhost'], timeout=60)
后续的所有操作,如搜索查询,都会自动使用这个默认连接,除非咱们通过using参数显式指定了另一个连接。
这种设计使得在大多数情况下,我们只需在应用启动时建立一次连接,而不需要在每个查询中重复指定连接信息,从而简化了代码并提高了代码的可读性和维护性。
参见:
https://elasticsearch-dsl.readthedocs.io/en/latest/configuration.html#default-connection
6、小结
篇幅原因,django-elasticsearch-dsl API 没有展开。如果需要,欢迎留言讨论。
在本文中,我们探讨了如何将Elasticsearch与Python结合使用,通过两种主要的Python客户端——elasticsearch-py和elasticsearch-dsl。
elasticsearch-py提供了直接且灵活的底层API访问,适用于需要完整控制Elasticsearch交互细节的场景。
相比之下,elasticsearch-dsl提供了更高级的抽象,通过更为Pythonic的接口简化了复杂搜索查询的构建,使得代码更加简洁易读,尤其适合日常使用和复杂查询构建。
此外,我们还介绍了如何通过elasticsearch-dsl内部管理的默认连接池来简化连接管理,避免了在每次查询时重复指定连接信息,从而提高了开发效率和代码的可维护性。通过这种方式,开发者只需在应用启动时配置一次连接,之后便可以在整个应用中复用这个默认连接。
无论是直接使用elasticsearch-py进行底层操作,还是利用elasticsearch-dsl进行更加高效的数据处理和搜索,Elasticsearch都能为Python开发者提供强大的搜索和数据分析能力,帮助他们轻松应对各种数据处理和搜索需求,将项目提升到新的高度。在选择合适的客户端和API时,重要的是根据项目的具体需求和团队的熟悉程度来做出决策,以确保既能充分发挥Elasticsearch的强大功能,又能保持代码的可读性和可维护性。
7 年+积累、 Elastic 创始人Shay Banon 等 15 位专家推荐的 Elasticsearch 8.X新书已上线
更短时间更快习得更多干货!
和全球 近2000+ Elastic 爱好者一起精进!
elastic6.cn ——ElasticStack进阶助手