Go发起HTTP2.0请求流程分析(前篇)
回复“Go语言”即可获赠从入门到进阶共10本电子书
远芳侵古道,晴翠接荒城。
前言
继Go中的HTTP请求之——HTTP1.1请求流程分析之后,中间断断续续,历时近一月,终于才敢开始码字写下本文。
阅读建议
HTTP2.0在建立TCP连接和安全的TLS传输通道与HTTP1.1的流程基本一致。所以笔者建议没有看过Go中的HTTP请求之——HTTP1.1请求流程分析这篇文章的先去补一下课,本文会基于前一篇文章仅介绍和HTTP2.0相关的逻辑。
(*Transport).roundTrip
(*Transport).roundTrip
方法会调用t.nextProtoOnce.Do(t.onceSetNextProtoDefaults)
初始化TLSClientConfig
以及h2transport
,而这两者都和HTTP2.0有着紧密的联系。
TLSClientConfig: 初始化client支持的http协议, 并在tls握手时告知server。
h2transport: 如果本次请求是http2,那么h2transport会接管连接,请求和响应的处理逻辑。
下面看看源码:
func (t *Transport) onceSetNextProtoDefaults() {
// ...此处省略代码...
t2, err := http2configureTransport(t)
if err != nil {
log.Printf("Error enabling Transport HTTP/2 support: %v", err)
return
}
t.h2transport = t2
// ...此处省略代码...
}
func http2configureTransport(t1 *Transport) (*http2Transport, error) {
connPool := new(http2clientConnPool)
t2 := &http2Transport{
ConnPool: http2noDialClientConnPool{connPool},
t1: t1,
}
connPool.t = t2
if err := http2registerHTTPSProtocol(t1, http2noDialH2RoundTripper{t2}); err != nil {
return nil, err
}
if t1.TLSClientConfig == nil {
t1.TLSClientConfig = new(tls.Config)
}
if !http2strSliceContains(t1.TLSClientConfig.NextProtos, "h2") {
t1.TLSClientConfig.NextProtos = append([]string{"h2"}, t1.TLSClientConfig.NextProtos...)
}
if !http2strSliceContains(t1.TLSClientConfig.NextProtos, "http/1.1") {
t1.TLSClientConfig.NextProtos = append(t1.TLSClientConfig.NextProtos, "http/1.1")
}
upgradeFn := func(authority string, c *tls.Conn) RoundTripper {
addr := http2authorityAddr("https", authority)
if used, err := connPool.addConnIfNeeded(addr, t2, c); err != nil {
go c.Close()
return http2erringRoundTripper{err}
} else if !used {
// Turns out we don't need this c.
// For example, two goroutines made requests to the same host
// at the same time, both kicking off TCP dials. (since protocol
// was unknown)
go c.Close()
}
return t2
}
if m := t1.TLSNextProto; len(m) == 0 {
t1.TLSNextProto = map[string]func(string, *tls.Conn) RoundTripper{
"h2": upgradeFn,
}
} else {
m["h2"] = upgradeFn
}
return t2, nil
}
笔者将上述的源码简单拆解为以下几个步骤:
新建一个
http2clientConnPool
并复制给t2,以后http2的请求会优先从该连接池中获取连接。初始化
TLSClientConfig
,并将支持的h2
和http1.1
协议添加到TLSClientConfig.NextProtos
中。定义一个
h2
的upgradeFn
存储到t1.TLSNextProto
里。
鉴于前一篇文章对新建连接前的步骤有了较为详细的介绍,所以这里直接看和server建立连接的部分源码,即(*Transport).dialConn
方法:
func (t *Transport) dialConn(ctx context.Context, cm connectMethod) (pconn *persistConn, err error) {
// ...此处省略代码...
if cm.scheme() == "https" && t.hasCustomTLSDialer() {
// ...此处省略代码...
} else {
conn, err := t.dial(ctx, "tcp", cm.addr())
if err != nil {
return nil, wrapErr(err)
}
pconn.conn = conn
if cm.scheme() == "https" {
var firstTLSHost string
if firstTLSHost, _, err = net.SplitHostPort(cm.addr()); err != nil {
return nil, wrapErr(err)
}
if err = pconn.addTLS(firstTLSHost, trace); err != nil {
return nil, wrapErr(err)
}
}
}
// Proxy setup.
// ...此处省略代码...
if s := pconn.tlsState; s != nil && s.NegotiatedProtocolIsMutual && s.NegotiatedProtocol != "" {
if next, ok := t.TLSNextProto[s.NegotiatedProtocol]; ok {
return &persistConn{t: t, cacheKey: pconn.cacheKey, alt: next(cm.targetAddr, pconn.conn.(*tls.Conn))}, nil
}
}
// ...此处省略代码...
}
笔者对上述的源码描述如下:
调用
t.dial(ctx, "tcp", cm.addr())
创建TCP连接。如果是https的请求, 则对请求建立安全的tls传输通道。
检查tls的握手状态,如果和server协商的
NegotiatedProtocol
协议不为空,且client的t.TLSNextProto
有该协议,则返回alt不为空的持久连接(HTTP1.1不会进入if条件里)。
笔者对上述的第三点进行展开。经笔者在本地debug验证,当client和server都支持http2时,s.NegotiatedProtocol
的值为h2
且s.NegotiatedProtocolIsMutual
的值为true
。
在上面分析http2configureTransport
函数时,我们知道TLSNextProto
注册了一个key为h2
的函数,所以调用next
实际就是调用前面的upgradeFn
函数。
upgradeFn
会调用connPool.addConnIfNeeded
向http2的连接池添加一个tls传输通道,并最终返回前面已经创建好的t2
即http2Transport
。
func (p *http2clientConnPool) addConnIfNeeded(key string, t *http2Transport, c *tls.Conn) (used bool, err error) {
p.mu.Lock()
// ...此处省略代码...
// 主要用于判断是否有必要像连接池添加新的连接
// 判断连接池中是否已有同host连接,如果有且该链接能够处理新的请求则直接返回
call, dup := p.addConnCalls[key]
if !dup {
// ...此处省略代码...
call = &http2addConnCall{
p: p,
done: make(chan struct{}),
}
p.addConnCalls[key] = call
go call.run(t, key, c)
}
p.mu.Unlock()
<-call.done
if call.err != nil {
return false, call.err
}
return !dup, nil
}
func (c *http2addConnCall) run(t *http2Transport, key string, tc *tls.Conn) {
cc, err := t.NewClientConn(tc)
p := c.p
p.mu.Lock()
if err != nil {
c.err = err
} else {
p.addConnLocked(key, cc)
}
delete(p.addConnCalls, key)
p.mu.Unlock()
close(c.done)
}
分析上述的源码我们能够得到两点结论:
执行完
upgradeFn
之后,(*Transport).dialConn返回的持久化连接中alt字段已经不是nil了。t.NewClientConn(tc)
新建出来的连接会保存在http2的连接池即http2clientConnPool
中,下一小结将对NewClientConn展开分析。
最后我们回到(*Transport).roundTrip方法并分析其中的关键源码:
func (t *Transport) roundTrip(req *Request) (*Response, error) {
t.nextProtoOnce.Do(t.onceSetNextProtoDefaults)
// ...此处省略代码...
for {
select {
case <-ctx.Done():
req.closeBody()
return nil, ctx.Err()
default:
}
// ...此处省略代码...
pconn, err := t.getConn(treq, cm)
if err != nil {
t.setReqCanceler(req, nil)
req.closeBody()
return nil, err
}
var resp *Response
if pconn.alt != nil {
// HTTP/2 path.
t.setReqCanceler(req, nil) // not cancelable with CancelRequest
resp, err = pconn.alt.RoundTrip(req)
} else {
resp, err = pconn.roundTrip(treq)
}
if err == nil {
return resp, nil
}
// ...此处省略代码...
}
}
结合前面的分析,pconn.alt
在server和client都支持http2协议的情况下是不为nil的。所以,http2的请求会走pconn.alt.RoundTrip(req)
分支,也就是说http2的请求流程就被http2Transport
接管啦。
(*http2Transport).NewClientConn
(*http2Transport).NewClientConn内部会调用t.newClientConn(c, t.disableKeepAlives())
。
因为本节内容较多,所以笔者不再一次性贴出源码,而是按关键步骤分析并分块儿贴出源码。
1、初始化一个http2ClientConn
:
cc := &http2ClientConn{
t: t,
tconn: c,
readerDone: make(chan struct{}),
nextStreamID: 1,
maxFrameSize: 16 << 10, // spec default
initialWindowSize: 65535, // spec default
maxConcurrentStreams: 1000, // "infinite", per spec. 1000 seems good enough.
peerMaxHeaderListSize: 0xffffffffffffffff, // "infinite", per spec. Use 2^64-1 instead.
streams: make(map[uint32]*http2clientStream),
singleUse: singleUse,
wantSettingsAck: true,
pings: make(map[[8]byte]chan struct{}),
}
上面的源码新建了一个默认的http2ClientConn。
initialWindowSize:初始化窗口大小为65535,这个值之后会初始化每一个数据流可发送的数据窗口大小。
maxConcurrentStreams:表示每个连接上允许最多有多少个数据流同时传输数据。
streams:当前连接上的数据流。
singleUse: 控制http2的连接是否允许多个数据流共享,其值由t.disableKeepAlives()
控制。
2、创建一个条件锁并且新建Writer&Reader。
cc.cond = sync.NewCond(&cc.mu)
cc.flow.add(int32(http2initialWindowSize))
cc.bw = bufio.NewWriter(http2stickyErrWriter{c, &cc.werr})
cc.br = bufio.NewReader(c)
新建Writer&Reader没什么好说的,需要注意的是cc.flow.add(int32(http2initialWindowSize))
。
cc.flow.add
将当前连接的可写流控制窗口大小设置为http2initialWindowSize
,即65535。
3、新建一个读写数据帧的Framer。
cc.fr = http2NewFramer(cc.bw, cc.br)
cc.fr.ReadMetaHeaders = hpack.NewDecoder(http2initialHeaderTableSize, nil)
cc.fr.MaxHeaderListSize = t.maxHeaderListSize()
4、向server发送开场白,并发送一些初始化数据帧。
initialSettings := []http2Setting{
{ID: http2SettingEnablePush, Val: 0},
{ID: http2SettingInitialWindowSize, Val: http2transportDefaultStreamFlow},
}
if max := t.maxHeaderListSize(); max != 0 {
initialSettings = append(initialSettings, http2Setting{ID: http2SettingMaxHeaderListSize, Val: max})
}
cc.bw.Write(http2clientPreface)
cc.fr.WriteSettings(initialSettings...)
cc.fr.WriteWindowUpdate(0, http2transportDefaultConnFlow)
cc.inflow.add(http2transportDefaultConnFlow + http2initialWindowSize)
cc.bw.Flush()
client向server发送的开场白内容如下:
const (
// client首先想server发送以PRI开头的一串字符串。
http2ClientPreface = "PRI * HTTP/2.0\r\n\r\nSM\r\n\r\n"
)
var (
http2clientPreface = []byte(http2ClientPreface)
)
发送完开场白后,client向server发送SETTINGS
数据帧。
http2SettingEnablePush: 告知server客户端是否开启push功能。
http2SettingInitialWindowSize:告知server客户端可接受的最大数据窗口是http2transportDefaultStreamFlow
(4M)。
发送完SETTINGS数据帧后,发送WINDOW_UPDATE数据帧, 因为第一个参数为0即streamID为0,则是告知server此连接可接受的最大数据窗口为http2transportDefaultConnFlow
(1G)。
发送完WINDOW_UPDATE数据帧后,将client的可读流控制窗口大小设置为http2transportDefaultConnFlow + http2initialWindowSize
。
5、开启读循环并返回
go cc.readLoop()
(*http2Transport).RoundTrip
(*http2Transport).RoundTrip只是一个入口函数,它会调用(*http2Transport). RoundTripOpt方法。
(*http2Transport). RoundTripOpt有两个步骤比较关键:
t.connPool().GetClientConn(req, addr)
: 在http2的连接池里面获取一个可用连接,其中连接池的类型为http2noDialClientConnPool
,参考http2configureTransport
函数。
cc.roundTrip(req)
: 通过获取到的可用连接发送请求并返回响应。
(http2noDialClientConnPool).GetClientConn
根据实际的debug结果(http2noDialClientConnPool).GetClientConn最终会调用(*http2clientConnPool).getClientConn(req *Request, addr string, dialOnMiss bool)
。
通过(http2noDialClientConnPool).GetClientConn获取连接时传递给(*http2clientConnPool).getClientConn方法的第三个参数始终为false
,该参数为false时代表着即使无法正常获取可用连接,也不在这个环节重新发起拨号流程。
在(*http2clientConnPool).getClientConn中会遍历同地址的连接,并判断连接的状态从而获取一个可以处理请求的连接。
for _, cc := range p.conns[addr] {
if st := cc.idleState(); st.canTakeNewRequest {
if p.shouldTraceGetConn(st) {
http2traceGetConn(req, addr)
}
p.mu.Unlock()
return cc, nil
}
}
cc.idleState()
判断当前连接池中的连接能否处理新的请求:
1、当前连接是否能被多个请求共享,如果仅单个请求使用且已经有一个数据流,则当前连接不能处理新的请求。
if cc.singleUse && cc.nextStreamID > 1 {
return
}
2、以下几点均为true时,才代表当前连接能够处理新的请求:
连接状态正常,即未关闭并且不处于正在关闭的状态。
当前连接正在处理的数据流小于
maxConcurrentStreams
。下一个要处理的数据流 + 当前连接处于等待状态的请求*2 < math.MaxInt32。
当前连接没有长时间处于空闲状态(主要通过
cc.tooIdleLocked()
判断)。
st.canTakeNewRequest = cc.goAway == nil && !cc.closed && !cc.closing && maxConcurrentOkay &&
int64(cc.nextStreamID)+2*int64(cc.pendingRequests) < math.MaxInt32 &&
!cc.tooIdleLocked()
当从链接池成功获取到一个可以处理请求的连接,就可以和server进行数据交互,即(*http2ClientConn).roundTrip
流程。
(*http2ClientConn).roundTrip
1、在真正开始处理请求前,还要进行header检查,http2对http1.1的某些header是不支持的,笔者就不对这个逻辑进行分析了,直接上源码:
func http2checkConnHeaders(req *Request) error {
if v := req.Header.Get("Upgrade"); v != "" {
return fmt.Errorf("http2: invalid Upgrade request header: %q", req.Header["Upgrade"])
}
if vv := req.Header["Transfer-Encoding"]; len(vv) > 0 && (len(vv) > 1 || vv[0] != "" && vv[0] != "chunked") {
return fmt.Errorf("http2: invalid Transfer-Encoding request header: %q", vv)
}
if vv := req.Header["Connection"]; len(vv) > 0 && (len(vv) > 1 || vv[0] != "" && !strings.EqualFold(vv[0], "close") && !strings.EqualFold(vv[0], "keep-alive")) {
return fmt.Errorf("http2: invalid Connection request header: %q", vv)
}
return nil
}
func http2commaSeparatedTrailers(req *Request) (string, error) {
keys := make([]string, 0, len(req.Trailer))
for k := range req.Trailer {
k = CanonicalHeaderKey(k)
switch k {
case "Transfer-Encoding", "Trailer", "Content-Length":
return "", &http2badStringError{"invalid Trailer key", k}
}
keys = append(keys, k)
}
if len(keys) > 0 {
sort.Strings(keys)
return strings.Join(keys, ","), nil
}
return "", nil
}
2、调用(*http2ClientConn).awaitOpenSlotForRequest
,一直等到当前连接处理的数据流小于maxConcurrentStreams
, 如果此函数返回错误,则本次请求失败。
2.1、double check当前连接可用。
if cc.closed || !cc.canTakeNewRequestLocked() {
if waitingForConn != nil {
close(waitingForConn)
}
return http2errClientConnUnusable
}
2.2、如果当前连接处理的数据流小于maxConcurrentStreams
则直接返回nil。笔者相信大部分逻辑走到这儿就返回了。
if int64(len(cc.streams))+1 <= int64(cc.maxConcurrentStreams) {
if waitingForConn != nil {
close(waitingForConn)
}
return nil
}
2.3、如果当前连接处理的数据流确实已经达到上限,则开始进入等待流程。
if waitingForConn == nil {
waitingForConn = make(chan struct{})
go func() {
if err := http2awaitRequestCancel(req, waitingForConn); err != nil {
cc.mu.Lock()
waitingForConnErr = err
cc.cond.Broadcast()
cc.mu.Unlock()
}
}()
}
cc.pendingRequests++
cc.cond.Wait()
cc.pendingRequests--
通过上面的逻辑知道,当前连接处理的数据流达到上限后有两种情况,一是等待请求被取消,二是等待其他请求结束。如果有其他数据流结束并唤醒当前等待的请求,则重复2.1、2.2和2.3的步骤。
3、调用cc.newStream()
在连接上创建一个数据流(创建数据流是线程安全的,因为源码中在调用awaitOpenSlotForRequest
之前先加锁,直到写入请求的header之后才释放锁)。
func (cc *http2ClientConn) newStream() *http2clientStream {
cs := &http2clientStream{
cc: cc,
ID: cc.nextStreamID,
resc: make(chan http2resAndError, 1),
peerReset: make(chan struct{}),
done: make(chan struct{}),
}
cs.flow.add(int32(cc.initialWindowSize))
cs.flow.setConnFlow(&cc.flow)
cs.inflow.add(http2transportDefaultStreamFlow)
cs.inflow.setConnFlow(&cc.inflow)
cc.nextStreamID += 2
cc.streams[cs.ID] = cs
return cs
}
笔者对上述代码简单描述如下:
新建一个
http2clientStream
,数据流ID为cc.nextStreamID
,新建数据流后,cc.nextStreamID +=2
。数据流通过
http2resAndError
管道接收请求的响应。初始化当前数据流的可写流控制窗口大小为
cc.initialWindowSize
,并保存连接的可写流控制指针。初始化当前数据流的可读流控制窗口大小为
http2transportDefaultStreamFlow
,并保存连接的可读流控制指针。最后将新建的数据流注册到当前连接中。
4、调用cc.t.getBodyWriterState(cs, body)
会返回一个http2bodyWriterState
结构体。通过该结构体可以知道请求body是否发送成功。
func (t *http2Transport) getBodyWriterState(cs *http2clientStream, body io.Reader) (s http2bodyWriterState) {
s.cs = cs
if body == nil {
return
}
resc := make(chan error, 1)
s.resc = resc
s.fn = func() {
cs.cc.mu.Lock()
cs.startedWrite = true
cs.cc.mu.Unlock()
resc <- cs.writeRequestBody(body, cs.req.Body)
}
s.delay = t.expectContinueTimeout()
if s.delay == 0 ||
!httpguts.HeaderValuesContainsToken(
cs.req.Header["Expect"],
"100-continue") {
return
}
// 此处省略代码,因为绝大部分请求都不会设置100-continue的标头
return
}
s.fn
: 标记当前数据流开始写入数据,并且将请求body的发送结果写入s.resc
管道(本文暂不对writeRequestBody
展开分析,下篇文章会对其进行分析)。
5、因为是多个请求共享一个连接,那么向连接写入数据帧时需要加锁,比如加锁写入请求头。
cc.wmu.Lock()
endStream := !hasBody && !hasTrailers
werr := cc.writeHeaders(cs.ID, endStream, int(cc.maxFrameSize), hdrs)
cc.wmu.Unlock()
6、如果有请求body,则开始写入请求body,没有请求body则设置响应header的超时时间(有请求body时,响应header的超时时间需要在请求body写完之后设置)。
if hasBody {
bodyWriter.scheduleBodyWrite()
} else {
http2traceWroteRequest(cs.trace, nil)
if d := cc.responseHeaderTimeout(); d != 0 {
timer := time.NewTimer(d)
defer timer.Stop()
respHeaderTimer = timer.C
}
}
scheduleBodyWrite
的内容如下:
func (s http2bodyWriterState) scheduleBodyWrite() {
if s.timer == nil {
// We're not doing a delayed write (see
// getBodyWriterState), so just start the writing
// goroutine immediately.
go s.fn()
return
}
http2traceWait100Continue(s.cs.trace)
if s.timer.Stop() {
s.timer.Reset(s.delay)
}
}
因为笔者的请求header中没有携带100-continue
标头,所以在前面的getBodyWriterState
函数中初始化的s.timer为nil即调用scheduleBodyWrite
会立即开始发送请求body。
7、轮询管道获取响应结果。
在看轮询源码之前,先看一个简单的函数:
handleReadLoopResponse := func(re http2resAndError) (*Response, bool, error) {
res := re.res
if re.err != nil || res.StatusCode > 299 {
bodyWriter.cancel()
cs.abortRequestBodyWrite(http2errStopReqBodyWrite)
}
if re.err != nil {
cc.forgetStreamID(cs.ID)
return nil, cs.getStartedWrite(), re.err
}
res.Request = req
res.TLS = cc.tlsState
return res, false, nil
}
该函数主要就是判断读到的响应是否正常,并根据响应的结果构造(*http2ClientConn).roundTrip
的返回值。
了解了handleReadLoopResponse
之后,下面就看看轮询的逻辑:
for {
select {
case re := <-readLoopResCh:
return handleReadLoopResponse(re)
// 此处省略代码(包含请求取消,请求超时等管道的轮询)
case err := <-bodyWriter.resc:
// Prefer the read loop's response, if available. Issue 16102.
select {
case re := <-readLoopResCh:
return handleReadLoopResponse(re)
default:
}
if err != nil {
cc.forgetStreamID(cs.ID)
return nil, cs.getStartedWrite(), err
}
bodyWritten = true
if d := cc.responseHeaderTimeout(); d != 0 {
timer := time.NewTimer(d)
defer timer.Stop()
respHeaderTimer = timer.C
}
}
}
笔者仅对上面的第二种情况即请求body发送完成进行描述:
能否读到响应,如果能够读取响应则直接返回。
判断请求body是否发送成功,如果发送失败,直接返回。
如果请求body发送成功,则设置响应header的超时时间。
总结
本文主要描述了两个方面的内容:
确认client和server都支持http2协议,并构建一个http2的连接,同时开启该连接的读循环。
通过http2连接池获取一个http2连接,并发送请求和读取响应。
预告
鉴于HTTTP2.0的内容较多,且文章篇幅过长时不易阅读,笔者将后续要分析的内容拆为两个部分:
描述数据帧和流控制以及读循环读到响应并发送给
readLoopResCh
管道。http2.0标头压缩逻辑。
最后,衷心希望本文能够对各位读者有一定的帮助。
注:
写本文时, 笔者所用go版本为: go1.14.2。
本文对h2c的情况不予以考虑。
因为笔者分析的是请求流程,所以没有在本地搭建server,而是使用了一个支持http2连接的图片一步步的debug。eg: https://dss0.bdstatic.com/5aV1bjqh_Q23odCf/static/superman/img/topnav/baiduyun@2x-e0be79e69e.png
参考
https://developers.google.com/web/fundamentals/performance/http2?hl=zh-cn
------------------- End -------------------
往期精彩文章推荐:
欢迎大家点赞,留言,转发,转载,感谢大家的相伴与支持
想加入Go学习群请在后台回复【入群】
万水千山总是情,点个【在看】行不行