图像分类:13个Kaggle项目的经验总结
来源:数据派THU
![](https://filescdn.proginn.com/c079d58b28f90621b48a3dbc64092473/143294ced1a4d840ca5826815613ad0a.webp)
Intel Image Classification:https://www.kaggle.com/puneet6060/intel-image-classification Recursion Cellular Image Classification:https://www.kaggle.com/c/recursion-cellular-image-classification SIIM-ISIC Melanoma Classification:https://www.kaggle.com/c/siim-isic-melanoma-classification APTOS 2019 Blindness Detection:https://www.kaggle.com/c/aptos2019-blindness-detection/notebooks Diabetic Retinopathy Detection:https://www.kaggle.com/c/diabetic-retinopathy-detection ML Project — Image Classification:https://www.kaggle.com/c/image-classification-fashion-mnist/notebooks Cdiscount’s Image Classification Challenge:https://www.kaggle.com/c/cdiscount-image-classification-challenge/notebooks Plant seedlings classifications:https://www.kaggle.com/c/plant-seedlings-classification/notebooks Aesthetic Visual Analysis:https://www.kaggle.com/c/aesthetic-visual-analysis/notebooks
数据 模型 损失函数
数据
图像预处理 + EDA
![](https://filescdn.proginn.com/8bb5b887b806c2ea3c08e9184e1d4428/98583b8049d842ff8a41a19fa2603089.webp)
Visualisation:https://www.kaggle.com/allunia/protein-atlas-exploration-and-baseline#Building-a-baseline-model- Dealing with Class imbalance:https://www.kaggle.com/rohandeysarkar/ultimate-image-classification-guide-2020 Fill missing values (labels, features and, etc.):https://www.kaggle.com/datafan07/analysis-of-melanoma-metadata-and-effnet-ensemble Normalisation :https://www.kaggle.com/vincee/intel-image-classification-cnn-keras Pre-processing:https://www.kaggle.com/ratthachat/aptos-eye-preprocessing-in-diabetic-retinopathy#3.A-Important-Update-on-Color-Version-of-Cropping-&-Ben's-Preprocessing
数据增强
![](https://filescdn.proginn.com/cded142dae68a2e7bdc9f93751ee6a1e/975844f66c2c29baaf9fbca7f42daa8e.webp)
Horizontal Flip:https://www.kaggle.com/datafan07/analysis-of-melanoma-metadata-and-effnet-ensemble Random Rotate and Random Dihedral:https://www.kaggle.com/iafoss/pretrained-resnet34-with-rgby-0-460-public-lb Hue, Saturation, Contrast, Brightness, Crop:https://www.kaggle.com/cdeotte/triple-stratified-kfold-with-tfrecords Colour jitter:https://www.kaggle.com/nroman/melanoma-pytorch-starter-efficientnet
模型
![](https://filescdn.proginn.com/0d7c844f93e6f091677da9f952e95242/9557009bc76a080869e53dc834bf0396.webp)
开发一个基线
开发一个足够大可以过拟合的模型
添加更多层 使用更好的结构 更完善的训练流程
结构
Residual Networks Wide Residual Networks Inception EfficientNet Swish activation Residual Attention Network
训练过程
Mixed-Precision Training Large Batch-Size Training Cross-Validation Set Weight Initialization Self-Supervised Training (Knowledge Distillation) Learning Rate Scheduler Learning Rate Warmup Early Stopping Differential Learning Rates Ensemble Transfer Learning Fine-Tuning
超参数调试
![](https://filescdn.proginn.com/2ca865d68823e4a084c41fdc0dea454f/732af17281c7abcd58ced4856f4dffda.webp)
正则化
Adding Dropout:https://www.kaggle.com/allunia/protein-atlas-exploration-and-baseline Adding or changing the position of Batch Norm:https://www.kaggle.com/allunia/protein-atlas-exploration-and-baseline Data augmentation:https://www.kaggle.com/cdeotte/triple-stratified-kfold-with-tfrecords Mixup:https://arxiv.org/abs/1710.09412 Weight regularization:https://www.kaggle.com/allunia/protein-atlas-exploration-and-baseline Gradient clipping:https://www.kaggle.com/allunia/protein-atlas-exploration-and-baseline
损失函数
![](https://filescdn.proginn.com/21054c42889d2dcf766ac2d127f77273/90db1efaa0779a5575b1e43a03e41c82.webp)
Label smoothing Focal loss SparseMax loss and Weighted cross-entropy BCE loss, BCE with logits loss and Categorical cross-entropy loss Additive Angular Margin Loss for Deep Face Recognition
评估 + 错误分析
![](https://filescdn.proginn.com/3c6e9ebfa469c6b205ad5663a0d79a5b/8a4f9476b5ce0bd7c38aa2936970952e.webp)
Tracking metrics and Confusion matrix:https://www.kaggle.com/vincee/intel-image-classification-cnn-keras Grad CAM:https://arxiv.org/pdf/1610.02391v1.pdf Test Time Augmentation (TTA):https://www.kaggle.com/iafoss/pretrained-resnet34-with-rgby-0-460-public-lb
最后
![](https://filescdn.proginn.com/457f86748791b9f961303e95ee5e7af5/ede5ad9278133851cc2a7ad6f0088622.webp)
加入知识星球【我们谈论数据科学】
300+小伙伴一起学习!
· 推荐阅读 ·
评论