Matplotlib如何绘制多个子图

Python大数据分析

共 2718字,需浏览 6分钟

 ·

2020-08-07 03:22

点击上方"蓝字"关注我们






Python大数据分析


记录   分享   成长


作者:雪山飞猪

博客地址:

https://www.cnblogs.com/chenqionghe/p/12355018.html

说明:本文经作者授权转载,禁止二次转载

Matplotlib是Python的底层绘图工具,可定制性很强,很多人刚开始使用Matplotlib时,不明白一些基础概念,比如figure和axis的区别?如何绘制多个子图的图表?这次写个小短文来讲一讲。

fig和axis的区别?

相信不少小伙伴一开始都是直接用plt.plot来绘图,非常简单,但这是偷懒的做法,不建议大家这样。

fig, ax = plt.subplots(2,2)是比较正统的画法(参数代表行列数),指定figure和axes,然后对axes单独进行操作(图表元素增加和修改)。

fig相当于是一个大的画布,ax相当于是小的子图,一个画布可以有一个或多个子图。

单个图表任何操作都是在axes对象上进行的,包括坐标轴、刻度、图例等。

具体怎么用,下面讲到。

绘制多子图

使用Matplotlib绘图单图相对比较容易,但有时候需要将多张图放在一张图表里,这就用到子图操作。

对应的有plt的subplot和figure的add_subplot的方法,参数可以是一个三位数字(例如111),也可以是一个数组(例如[1,1,1]),3个数字分别代表:

  • 子图总行数
  • 子图总列数
  • 子图位置

以下三种方式效果一样,呈现的可视化图表如下:

「方式一:通过plt的subplot」

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
# 画第1个图:折线图
x=np.arange(1,100)
plt.subplot(221)
plt.plot(x,x*x)
# 画第2个图:散点图
plt.subplot(222)
plt.scatter(np.arange(0,10), np.random.rand(10))
# 画第3个图:饼图
plt.subplot(223)
plt.pie(x=[15,30,45,10],labels=list('ABCD'),autopct='%.0f',explode=[0,0.05,0,0])
# 画第4个图:条形图
plt.subplot(224)
plt.bar([20,10,30,25,15],[25,15,35,30,20],color='b')
plt.show()

「方式二:通过figure的add_subplot」

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
fig=plt.figure()
# 画第1个图:折线图
x=np.arange(1,100)
ax1=fig.add_subplot(221)
ax1.plot(x,x*x)
# 画第2个图:散点图
ax2=fig.add_subplot(222)
ax2.scatter(np.arange(0,10), np.random.rand(10))
# 画第3个图:饼图
ax3=fig.add_subplot(223)
ax3.pie(x=[15,30,45,10],labels=list('ABCD'),autopct='%.0f',explode=[0,0.05,0,0])
# 画第4个图:条形图
ax4=fig.add_subplot(224)
ax4.bar([20,10,30,25,15],[25,15,35,30,20],color='b')
plt.show()

「方式三:通过plt的subplots」subplots返回的值的类型为元组,其中包含两个元素:第一个为一个画布,第二个是子图

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

fig,ax=plt.subplots(2,2)
# 画第1个图:折线图
x=np.arange(1,100)
ax[0][0].plot(x,x*x)
# 画第2个图:散点图
ax[0][1].scatter(np.arange(0,10), np.random.rand(10))
# 画第3个图:饼图
ax[1][0].pie(x=[15,30,45,10],labels=list('ABCD'),autopct='%.0f',explode=[0,0.05,0,0])
# 画第4个图:条形图
ax[1][1].bar([20,10,30,25,15],[25,15,35,30,20],color='b')
plt.show()

绘制不规则子图

前面的两个图占了221和222的位置,如果想在下面只放一个图,得把前两个当成一列,即2行1列第2个位置。

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
# 画第1个图:折线图
x=np.arange(1,100)
plt.subplot(221)
plt.plot(x,x*x)
# 画第2个图:散点图
plt.subplot(222)
plt.scatter(np.arange(0,10), np.random.rand(10))
# 画第3个图:条形图
# 前面的两个图占了221和222的位置,如果想在下面只放一个图,得把前两个当成一列,即2行1列第2个位置
plt.subplot(212)
plt.bar([20,10,30,25,15],[25,15,35,30,20],color='b')
plt.show()

加入我们的知识星球【Python大数据分析】

爱上数据分析!







往期精选


1

jupyter lab最强代码提示插件来了

2

Github 30000 Star的免费BI工具:Superset

3

Python+Kepler.gl轻松制作时间轮播地图




Python大数据分析

data creates value

扫码关注我们

                           


浏览 31
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报
评论
图片
表情
推荐
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报